3 research outputs found

    Hierarchical Orthogonal Matrix Generation and Matrix-Vector Multiplications in Rigid Body Simulations

    Full text link
    In this paper, we apply the hierarchical modeling technique and study some numerical linear algebra problems arising from the Brownian dynamics simulations of biomolecular systems where molecules are modeled as ensembles of rigid bodies. Given a rigid body pp consisting of nn beads, the 6×3n6 \times 3n transformation matrix ZZ that maps the force on each bead to pp's translational and rotational forces (a 6×16\times 1 vector), and VV the row space of ZZ, we show how to explicitly construct the (3n6)×3n(3n-6) \times 3n matrix Q~\tilde{Q} consisting of (3n6)(3n-6) orthonormal basis vectors of VV^{\perp} (orthogonal complement of VV) using only O(nlogn)\mathcal{O}(n \log n) operations and storage. For applications where only the matrix-vector multiplications Q~v\tilde{Q}{\bf v} and Q~Tv\tilde{Q}^T {\bf v} are needed, we introduce asymptotically optimal O(n)\mathcal{O}(n) hierarchical algorithms without explicitly forming Q~\tilde{Q}. Preliminary numerical results are presented to demonstrate the performance and accuracy of the numerical algorithms
    corecore