136,392 research outputs found

    Hierarchical Multi-scale Attention Networks for action recognition

    Get PDF
    Recurrent Neural Networks (RNNs) have been widely used in natural language processing and computer vision. Among them, the Hierarchical Multi-scale RNN (HM-RNN), a kind of multi-scale hierarchical RNN proposed recently, can learn the hierarchical temporal structure from data automatically. In this paper, we extend the work to solve the computer vision task of action recognition. However, in sequence-to-sequence models like RNN, it is normally very hard to discover the relationships between inputs and outputs given static inputs. As a solution, attention mechanism could be applied to extract the relevant information from input thus facilitating the modeling of input-output relationships. Based on these considerations, we propose a novel attention network, namely Hierarchical Multi-scale Attention Network (HM-AN), by combining the HM-RNN and the attention mechanism and apply it to action recognition. A newly proposed gradient estimation method for stochastic neurons, namely Gumbel-softmax, is exploited to implement the temporal boundary detectors and the stochastic hard attention mechanism. To amealiate the negative effect of sensitive temperature of the Gumbel-softmax, an adaptive temperature training method is applied to better the system performance. The experimental results demonstrate the improved effect of HM-AN over LSTM with attention on the vision task. Through visualization of what have been learnt by the networks, it can be observed that both the attention regions of images and the hierarchical temporal structure can be captured by HM-AN

    Facial Action Unit Detection Using Attention and Relation Learning

    Full text link
    Attention mechanism has recently attracted increasing attentions in the field of facial action unit (AU) detection. By finding the region of interest of each AU with the attention mechanism, AU-related local features can be captured. Most of the existing attention based AU detection works use prior knowledge to predefine fixed attentions or refine the predefined attentions within a small range, which limits their capacity to model various AUs. In this paper, we propose an end-to-end deep learning based attention and relation learning framework for AU detection with only AU labels, which has not been explored before. In particular, multi-scale features shared by each AU are learned firstly, and then both channel-wise and spatial attentions are adaptively learned to select and extract AU-related local features. Moreover, pixel-level relations for AUs are further captured to refine spatial attentions so as to extract more relevant local features. Without changing the network architecture, our framework can be easily extended for AU intensity estimation. Extensive experiments show that our framework (i) soundly outperforms the state-of-the-art methods for both AU detection and AU intensity estimation on the challenging BP4D, DISFA, FERA 2015 and BP4D+ benchmarks, (ii) can adaptively capture the correlated regions of each AU, and (iii) also works well under severe occlusions and large poses.Comment: This paper is accepted by IEEE Transactions on Affective Computin

    Deep Adaptive Attention for Joint Facial Action Unit Detection and Face Alignment

    Full text link
    Facial action unit (AU) detection and face alignment are two highly correlated tasks since facial landmarks can provide precise AU locations to facilitate the extraction of meaningful local features for AU detection. Most existing AU detection works often treat face alignment as a preprocessing and handle the two tasks independently. In this paper, we propose a novel end-to-end deep learning framework for joint AU detection and face alignment, which has not been explored before. In particular, multi-scale shared features are learned firstly, and high-level features of face alignment are fed into AU detection. Moreover, to extract precise local features, we propose an adaptive attention learning module to refine the attention map of each AU adaptively. Finally, the assembled local features are integrated with face alignment features and global features for AU detection. Experiments on BP4D and DISFA benchmarks demonstrate that our framework significantly outperforms the state-of-the-art methods for AU detection.Comment: This paper has been accepted by ECCV 201
    • …
    corecore