1,449 research outputs found

    Person Re-Identification using Deep Convnets with Multi-task Learning

    Get PDF

    The Lived Experience of Intersectionality Among African American Women with Breast Cancer

    Get PDF
    African American women (AAW) continue to have breast cancer mortality rates that are 42% higher than White women (De Santis et al., 2015). Researchers suggest that an epistemological approach that integrates the biomedical and feminist models would be more effective in addressing health disparities. The concept of intersectionality, which grew out of the Black feminist movement, provides a lens in which to view the lived experiences of AAW with breast cancer. The intersectionality paradigm attempts to address the marginalized, oppressive, intersecting social existence of AAW through the examination of identity, social class, and power. This qualitative study applied a descriptive phenomenological approach to examine the lived experiences of intersectionality among AAW with breast cancer. Using the phenomenological approach, 10 AAW ages 45-80, which were located various geographical areas of United States (U.S.), participated in one to one semi-structured 60- 90 minute digitally audio-recorded interviews. All of the participants had a self-report diagnosis of breast cancer with varying stages. A modified Husserlian approach by Amedeo Giorgi (2009) guided the data analysis. The following themes emerged from the data analysis. The first, altruism, descriptions of how the women’s behavior reflects a historical trend of selfless giving and caring for those within their environment. The second theme: marginalization, descriptions of how the women were forced to the fringes or margins of society. Two forms of marginalization emerged: 1) passive marginalization described circumstances in which the women removed themselves either mentally or physically from societal adversity; and 2) active marginalization described circumstances in which the women were overlooked, devalued or ostracized by others. The third theme, silent strength, describes how the women displayed strength in silence while enduring life in the intersection. The final theme, existential invisibility, describes how the women have been an essential presence in society, but remain obscured individuals. This research indicates that AAW could have additional upstream risk factors for the development of breast cancer that stem from life within the intersection. Implications for future research as a result of this study include: a community based participatory research project to examine the psychological effects of stress, development of culturally sensitive research instruments that measure stress, and mixed method studies that examine breast cancer disparities

    A nonstationary nonparametric Bayesian approach to dynamically modeling effective connectivity in functional magnetic resonance imaging experiments

    Get PDF
    Effective connectivity analysis provides an understanding of the functional organization of the brain by studying how activated regions influence one other. We propose a nonparametric Bayesian approach to model effective connectivity assuming a dynamic nonstationary neuronal system. Our approach uses the Dirichlet process to specify an appropriate (most plausible according to our prior beliefs) dynamic model as the "expectation" of a set of plausible models upon which we assign a probability distribution. This addresses model uncertainty associated with dynamic effective connectivity. We derive a Gibbs sampling approach to sample from the joint (and marginal) posterior distributions of the unknowns. Results on simulation experiments demonstrate our model to be flexible and a better candidate in many situations. We also used our approach to analyzing functional Magnetic Resonance Imaging (fMRI) data on a Stroop task: our analysis provided new insight into the mechanism by which an individual brain distinguishes and learns about shapes of objects.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS470 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Sparse Bayesian information filters for localization and mapping

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2008This thesis formulates an estimation framework for Simultaneous Localization and Mapping (SLAM) that addresses the problem of scalability in large environments. We describe an estimation-theoretic algorithm that achieves significant gains in computational efficiency while maintaining consistent estimates for the vehicle pose and the map of the environment. We specifically address the feature-based SLAM problem in which the robot represents the environment as a collection of landmarks. The thesis takes a Bayesian approach whereby we maintain a joint posterior over the vehicle pose and feature states, conditioned upon measurement data. We model the distribution as Gaussian and parametrize the posterior in the canonical form, in terms of the information (inverse covariance) matrix. When sparse, this representation is amenable to computationally efficient Bayesian SLAM filtering. However, while a large majority of the elements within the normalized information matrix are very small in magnitude, it is fully populated nonetheless. Recent feature-based SLAM filters achieve the scalability benefits of a sparse parametrization by explicitly pruning these weak links in an effort to enforce sparsity. We analyze one such algorithm, the Sparse Extended Information Filter (SEIF), which has laid much of the groundwork concerning the computational benefits of the sparse canonical form. The thesis performs a detailed analysis of the process by which the SEIF approximates the sparsity of the information matrix and reveals key insights into the consequences of different sparsification strategies. We demonstrate that the SEIF yields a sparse approximation to the posterior that is inconsistent, suffering from exaggerated confidence estimates. This overconfidence has detrimental effects on important aspects of the SLAM process and affects the higher level goal of producing accurate maps for subsequent localization and path planning. This thesis proposes an alternative scalable filter that maintains sparsity while preserving the consistency of the distribution. We leverage insights into the natural structure of the feature-based canonical parametrization and derive a method that actively maintains an exactly sparse posterior. Our algorithm exploits the structure of the parametrization to achieve gains in efficiency, with a computational cost that scales linearly with the size of the map. Unlike similar techniques that sacrifice consistency for improved scalability, our algorithm performs inference over a posterior that is conservative relative to the nominal Gaussian distribution. Consequently, we preserve the consistency of the pose and map estimates and avoid the effects of an overconfident posterior. We demonstrate our filter alongside the SEIF and the standard EKF both in simulation as well as on two real-world datasets. While we maintain the computational advantages of an exactly sparse representation, the results show convincingly that our method yields conservative estimates for the robot pose and map that are nearly identical to those of the original Gaussian distribution as produced by the EKF, but at much less computational expense. The thesis concludes with an extension of our SLAM filter to a complex underwater environment. We describe a systems-level framework for localization and mapping relative to a ship hull with an Autonomous Underwater Vehicle (AUV) equipped with a forward-looking sonar. The approach utilizes our filter to fuse measurements of vehicle attitude and motion from onboard sensors with data from sonar images of the hull. We employ the system to perform three-dimensional, 6-DOF SLAM on a ship hull

    Sensor fusion in distributed cortical circuits

    Get PDF
    The substantial motion of the nature is to balance, to survive, and to reach perfection. The evolution in biological systems is a key signature of this quintessence. Survival cannot be achieved without understanding the surrounding world. How can a fruit fly live without searching for food, and thereby with no form of perception that guides the behavior? The nervous system of fruit fly with hundred thousand of neurons can perform very complicated tasks that are beyond the power of an advanced supercomputer. Recently developed computing machines are made by billions of transistors and they are remarkably fast in precise calculations. But these machines are unable to perform a single task that an insect is able to do by means of thousands of neurons. The complexity of information processing and data compression in a single biological neuron and neural circuits are not comparable with that of developed today in transistors and integrated circuits. On the other hand, the style of information processing in neural systems is also very different from that of employed by microprocessors which is mostly centralized. Almost all cognitive functions are generated by a combined effort of multiple brain areas. In mammals, Cortical regions are organized hierarchically, and they are reciprocally interconnected, exchanging the information from multiple senses. This hierarchy in circuit level, also preserves the sensory world within different levels of complexity and within the scope of multiple modalities. The main behavioral advantage of that is to understand the real-world through multiple sensory systems, and thereby to provide a robust and coherent form of perception. When the quality of a sensory signal drops, the brain can alternatively employ other information pathways to handle cognitive tasks, or even to calibrate the error-prone sensory node. Mammalian brain also takes a good advantage of multimodal processing in learning and development; where one sensory system helps another sensory modality to develop. Multisensory integration is considered as one of the main factors that generates consciousness in human. Although, we still do not know where exactly the information is consolidated into a single percept, and what is the underpinning neural mechanism of this process? One straightforward hypothesis suggests that the uni-sensory signals are pooled in a ploy-sensory convergence zone, which creates a unified form of perception. But it is hard to believe that there is just one single dedicated region that realizes this functionality. Using a set of realistic neuro-computational principles, I have explored theoretically how multisensory integration can be performed within a distributed hierarchical circuit. I argued that the interaction of cortical populations can be interpreted as a specific form of relation satisfaction in which the information preserved in one neural ensemble must agree with incoming signals from connected populations according to a relation function. This relation function can be seen as a coherency function which is implicitly learnt through synaptic strength. Apart from the fact that the real world is composed of multisensory attributes, the sensory signals are subject to uncertainty. This requires a cortical mechanism to incorporate the statistical parameters of the sensory world in neural circuits and to deal with the issue of inaccuracy in perception. I argued in this thesis how the intrinsic stochasticity of neural activity enables a systematic mechanism to encode probabilistic quantities within neural circuits, e.g. reliability, prior probability. The systematic benefit of neural stochasticity is well paraphrased by the problem of Duns Scotus paradox: imagine a donkey with a deterministic brain that is exposed to two identical food rewards. This may make the animal suffer and die starving because of indecision. In this thesis, I have introduced an optimal encoding framework that can describe the probability function of a Gaussian-like random variable in a pool of Poisson neurons. Thereafter a distributed neural model is proposed that can optimally combine conditional probabilities over sensory signals, in order to compute Bayesian Multisensory Causal Inference. This process is known as a complex multisensory function in the cortex. Recently it is found that this process is performed within a distributed hierarchy in sensory cortex. Our work is amongst the first successful attempts that put a mechanistic spotlight on understanding the underlying neural mechanism of Multisensory Causal Perception in the brain, and in general the theory of decentralized multisensory integration in sensory cortex. Engineering information processing concepts in the brain and developing new computing technologies have been recently growing. Neuromorphic Engineering is a new branch that undertakes this mission. In a dedicated part of this thesis, I have proposed a Neuromorphic algorithm for event-based stereoscopic fusion. This algorithm is anchored in the idea of cooperative computing that dictates the defined epipolar and temporal constraints of the stereoscopic setup, to the neural dynamics. The performance of this algorithm is tested using a pair of silicon retinas

    Sensor fusion in distributed cortical circuits

    Get PDF
    The substantial motion of the nature is to balance, to survive, and to reach perfection. The evolution in biological systems is a key signature of this quintessence. Survival cannot be achieved without understanding the surrounding world. How can a fruit fly live without searching for food, and thereby with no form of perception that guides the behavior? The nervous system of fruit fly with hundred thousand of neurons can perform very complicated tasks that are beyond the power of an advanced supercomputer. Recently developed computing machines are made by billions of transistors and they are remarkably fast in precise calculations. But these machines are unable to perform a single task that an insect is able to do by means of thousands of neurons. The complexity of information processing and data compression in a single biological neuron and neural circuits are not comparable with that of developed today in transistors and integrated circuits. On the other hand, the style of information processing in neural systems is also very different from that of employed by microprocessors which is mostly centralized. Almost all cognitive functions are generated by a combined effort of multiple brain areas. In mammals, Cortical regions are organized hierarchically, and they are reciprocally interconnected, exchanging the information from multiple senses. This hierarchy in circuit level, also preserves the sensory world within different levels of complexity and within the scope of multiple modalities. The main behavioral advantage of that is to understand the real-world through multiple sensory systems, and thereby to provide a robust and coherent form of perception. When the quality of a sensory signal drops, the brain can alternatively employ other information pathways to handle cognitive tasks, or even to calibrate the error-prone sensory node. Mammalian brain also takes a good advantage of multimodal processing in learning and development; where one sensory system helps another sensory modality to develop. Multisensory integration is considered as one of the main factors that generates consciousness in human. Although, we still do not know where exactly the information is consolidated into a single percept, and what is the underpinning neural mechanism of this process? One straightforward hypothesis suggests that the uni-sensory signals are pooled in a ploy-sensory convergence zone, which creates a unified form of perception. But it is hard to believe that there is just one single dedicated region that realizes this functionality. Using a set of realistic neuro-computational principles, I have explored theoretically how multisensory integration can be performed within a distributed hierarchical circuit. I argued that the interaction of cortical populations can be interpreted as a specific form of relation satisfaction in which the information preserved in one neural ensemble must agree with incoming signals from connected populations according to a relation function. This relation function can be seen as a coherency function which is implicitly learnt through synaptic strength. Apart from the fact that the real world is composed of multisensory attributes, the sensory signals are subject to uncertainty. This requires a cortical mechanism to incorporate the statistical parameters of the sensory world in neural circuits and to deal with the issue of inaccuracy in perception. I argued in this thesis how the intrinsic stochasticity of neural activity enables a systematic mechanism to encode probabilistic quantities within neural circuits, e.g. reliability, prior probability. The systematic benefit of neural stochasticity is well paraphrased by the problem of Duns Scotus paradox: imagine a donkey with a deterministic brain that is exposed to two identical food rewards. This may make the animal suffer and die starving because of indecision. In this thesis, I have introduced an optimal encoding framework that can describe the probability function of a Gaussian-like random variable in a pool of Poisson neurons. Thereafter a distributed neural model is proposed that can optimally combine conditional probabilities over sensory signals, in order to compute Bayesian Multisensory Causal Inference. This process is known as a complex multisensory function in the cortex. Recently it is found that this process is performed within a distributed hierarchy in sensory cortex. Our work is amongst the first successful attempts that put a mechanistic spotlight on understanding the underlying neural mechanism of Multisensory Causal Perception in the brain, and in general the theory of decentralized multisensory integration in sensory cortex. Engineering information processing concepts in the brain and developing new computing technologies have been recently growing. Neuromorphic Engineering is a new branch that undertakes this mission. In a dedicated part of this thesis, I have proposed a Neuromorphic algorithm for event-based stereoscopic fusion. This algorithm is anchored in the idea of cooperative computing that dictates the defined epipolar and temporal constraints of the stereoscopic setup, to the neural dynamics. The performance of this algorithm is tested using a pair of silicon retinas
    • …
    corecore