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Person Re-Identification using Deep Convnets with
Multi-task Learning

Niall McLaughlin, Jesus Martinez del Rincon, and Paul Miller

Abstract—Person re-identification involves recognizing a per-
son across non-overlapping camera views, with different pose,
illumination, and camera characteristics. We propose to tackle
this problem by training a deep convolutional network to repre-
sent a person’s appearance as a low-dimensional feature vector
that is invariant to common appearance variations encountered
in the re-identification problem. Specifically, a Siamese-network
architecture is used to train a feature extraction network using
pairs of similar and dissimilar images. We show that use of a
novel multi-task learning objective is crucial for regularizing the
network parameters in order to prevent over-fitting due to the
small size the training dataset. We complement the verification
task, which is at the heart of re-identification, by training the
network to jointly perform verification, identification, and to
recognise attributes related to the clothing and pose of the person
in each image. Additionally, we show that our proposed approach
performs well even in the challenging cross-dataset scenario,
which may better reflect real-world expected performance.

Index Terms—person re-identification, deep learning, neural
networks, feature embedding

I. INTRODUCTION

Person re-identification models the problem of tracking
a person as they move through a non-overlapping camera
network. Reliable person re-identification is vital for multiple
camera tracking in realistic conditions, where there is little
control over the image acquisition process, where camera
coverage may be sparse, and where the subject may be non-
cooperative. The core of this problem is to decide whether
pedestrian detections from several non-overlapping cameras,
acquired at different times, were all caused by the same person.
In the most general case, the individual cameras will have
different hardware, will have non-overlapping fields of view,
will capture the person from different angles, with different
pose, and with differing illumination. Due to the large number
of uncontrolled sources of variation, as well as generally poor
image quality, this task remains very challenging.

Current approaches to the re-identification problem are
based on either extraction of features that are invariant to the
expected sources of variation [30], [29], or use of a supervised
learning algorithm to discover the most relevant information
for matching images [57], [67]. Each of these approaches has
its own drawbacks: Invariant feature extraction algorithms may
be designed based on intuition [15] or using a physics based
model [30] of the predicted variation. As both physically based
models and hand-crafted feature extraction algorithms rely
on human judgement, they may be unable to capture some
of the subtle, but potentially important, aspects of the data.
Similarly with learning based approaches that rely on pre-
established features, a large number of parameters may have

to be learned, leading to over-fitting, due to the small size of
the training sets available for this problem [17], [65]. Their
performance may also be strongly related to the chosen pre-
established features and not be reproducible with other feature
types and/or datasets, reducing their generality. In this paper
we will address the person re-identification problem using a
deep-learning based approach. In contrast to most existing
approaches, we propose to combine invariant feature extraction
and supervised learning into a single unified framework based
on deep convolutional neural networks, trained to specifically
address the person re-identification problem. We make use
of several techniques, including multi-task learning, data-
augmentation, and dropout to reduce the risk of over-fitting.

Our proposed system uses the Siamese network architecture
[19], [6], to train a deep convolutional network to extract
features useful for person re-identification. This architecture
trains a neural network to produce a low-dimensional feature
representation of the input images, where diverse images of
the same person are mapped onto similar locations in the
feature space, while images of different people are mapped
onto different locations in the feature space. The network
is trained using a diverse set of images, helping it to learn
the subtle cues that indicate whether images depict the same
person or not, which would be virtually impossible to discover
using hand-crafted features.

This paper differs from other re-identification methods
based on deep networks [61], [37] by inclusion of multi-
task learning to improve re-identification performance and
prevent over-fitting to the training dataset. In particular, the
multi-task network will be trained to perform verification,
identification, clothing attribute labelling, and pose labelling.
This aims to encourage the learned feature representation to
better generalize to unseen data such as other re-identification
datasets. We show that by using multi-task learning, the re-
identification performance of a simple convolutional network
can match that of the more complex network, such as [61],
given the same training and testing datasets. Our approach
may therefore have computational efficiency advantages at
run-time, due to the smaller number of parameters. In addition,
our multi-task learning approach is general enough that it
could be applied to the training of more complex networks to
further improve their performance. Finally, as a side effect of
the multi-task training procedure we obtain accurate full-body
classifiers for gender, pose, and clothing attributes, which have
useful applications independent of person re-identification.
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II. RELATED WORK

Person re-identification is typically modelled as a verifi-
cation problem that involves deciding whether images from
disjoint cameras depict the same person or not. Traditional
approaches to re-identification typically involve extracting
invariant features [53], [56], [29], [8], [15], optionally followed
by metric learning [22], [21], [57], [27]. In practice it can
be challenging to design a complete re-identification system
that fulfils all the desirable, and somewhat conflicting criteria,
because of the difficulty involved with separating factors
related to identity from those related to other causes.

A. Invariant feature extraction

Ideally, the features used for re-identification should be
invariant under common image transformations, while having
a high degree of inter-person variation, and a low degree
of intra-personal variation. Colour is commonly used as it
exhibits a degree of pose invariance [53]. However, colour
features, especially RGB or HSV, tend not to be illumination
invariant [56] or invariant to different camera set-ups. At-
tempts have therefore been made to use physical illumination
models, such as the Retinex model [30], to understand how
colour features are affected by illumination to improve their
invariance. Brightness transfer functions (BTF) can be used
to transform colour features as a person moves between a
pair of cameras [46], [26], however the transfer function may
need to be relearned for each camera pair if the illumination
changes significantly, limiting their value for real world appli-
cations. The intra-distributional structure of colour features,
which may remain invariant even after illumination change
has been exploited by [29]. Texture and shape features can
also be used, such as in the SDALF method [15], which
uses prior knowledge of the bi-lateral symmetry of human
appearance to extract robust colour and texture features, and
omit extraneous variation. Pictorial structures, which isolate
specific body parts, have been used to segment the person from
the background, in order to more reliably measure colour and
texture features [8].

Hand-designed features may not take full advantage of
the information contained in the training images and are
labour intensive to develop. Therefore supervised learning
approaches have been developed that distinguish between
the features and variations likely to be related to identity,
and those likely caused by unrelated factors. Examples of
supervised learning systems that have been used for person
re-identification include the Ensemble of Localized Features
(ELF) approach [18], which uses an Adaboost classifier com-
bining many simple classifiers, to select the features that most
discriminate between different people. A related approach
learns to represent different body regions using different
features [3]. The features from all the different body regions
are then combined together to provide strong discrimination
among people. An approach based on learning invariant colour
features in small image patches, which makes used of sparse
coding and an auto-encoder neural network is presented in [56]
Dictionary learning has been used by [35] to learn patch

representations that are constant across differing views in a
supervised learning setting.

B. Metric Learning

Metric learning encompasses a family of supervised learn-
ing methods that use a Mahalanobis distance metric to com-
pare features while emphasising inter-personal differences
and de-emphasising intra-personal differences. The simplest
such approach is Linear Discriminant Analysis (LDA), how-
ever enforcing different constraints can give better perfor-
mance [22], such as transferring the optimisation problem into
the information-theoretic setting [11]. Metric learning can be
applied in a single or multiple shot setting [21], depending
on the number of example images of each person. Methods
such as Relaxed Pairwise Learning (RPLM) [22], which uses
similarity and dissimilarity constraints, have demonstrated
that high re-identification accuracy can be achieved using
only simple colour and texture features, in conjunction with
a suitable metric learning algorithm. Other related metric
learning approaches include Large Margin Nearest-Neighbour
(LMNN) [57], which has been adapted to the re-identification
problem by inclusion of rejections [13]. Equivalence con-
straints, based on similarity and dissimilarity, are used in [27]
which makes efficient use of sparse labels. The relative
distance between image pairs is used by [67] to produce a
distance metric, while attempting to avoid over-fitting. An
explicit polynomial kernel feature map is used in [7] to
compare the similarity of all patches in two images, which
produces a feature used as input to a mixture of linear
similarity functions. Metric learning and deep learning are
combined by [24], which uses hand-crafted features as input to
a deep-network that learns a non-linear local metric to compare
images. Prior knowledge of the re-identification problem is
used by [39] to cope with illumination changes and to extract
low-level features, before using the features with a subspace
metric learning method. It is also possible to learn verification
decision function together with a distance metric to improve
performance compared with a fixed verification threshold [38].
Another method that can be used to learn a distance metric is
Canonical Correlation Analysis (CCA) [40]. CCA is used in
conjunction with reference descriptors in [2], to achieve highly
accurate re-identification given only simple features. Person
re-identification can also be cast as a ranking problem, where
the ranking function is learned using a maximum margin
framework [47]. In contrast to the above supervised methods,
side information, which can be collected in an unsupervised
manner and indicates that certain examples belong to the
same class, can be used by the relevance component analysis
(RCA) method to learn a Mahalanobis metric [5]. Additional
information, such as depth information, can be used with a
modified version of information theoretic metric learning [11]
to improve re-identification performance [59]. The fact that
people move through camera networks has been used to learn
multiple related Mahalanobis distance metrics between camera
pairs [42], however, this approach required knowledge of
the camera network layout and different training for each
camera pair. The main drawback of the above metric learning
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approaches is their tendency to over-fit, due to the small size
and high variability of the available re-identification datasets
compared with the large number of parameters that must be
learned.

C. Deep Convolutional Neural Networks

There has been renewed interest in using neural networks
for computer vision, sparked by the significant performance
improvements over previously state of the art methods recently
achieved using deep convolutional networks (CNNs) [28].
An application of neural networks that is particularly suited
to person re-identification is that of learning embeddings,
which involves mapping images into a low dimensional feature
space, while preserving semantic relationships between the
images [19]. For example, the ’Siamese network’ [19], [6] can
learn to map visually different images of the same person to
similar locations in feature space, and map images of different
people to distant locations in the feature space. This requires
the network to learn to discriminate between the identifying
information and unimportant background variation.

Several other deep learning methods have been tried for
person re-identification, such as using triplets rather than pairs
of images to enforce the similarity and dissimilarity constraints
between images [14], or using a new type of neural network
layer to directly compare the appearance similarity between
different image regions [1].

The standard Siamese network architecture has previously
been used for person re-identification [61], however as we will
show (see Section V-A), over-fitting can be an issue when this
approach is used alone. Multi-task learning, where a network
is trained to complete several related tasks in addition to the
main problem of interest, has previously been used to address
over-fitting. Multi-task learning may encourage the network to
learn a more robust internal feature representation [10]. It has
been used to improve the performance of networks for tasks
such as face key-point recognition, face alignment [63], and
facial verification [51]. This will be combined with the notion
that, given accurate recognition of attributes, such as clothing
type or sex, which do not vary under changing illumination,
person re-identification could be performed without the need
for low-level features, such as texture and colour, which are
likely to vary with environmental conditions [31].

There are also several re-identification methods that make
use of attributes. Such as [32] which directly uses predicted
attributes as a feature to perform re-identification. However
this method does not take advantage of the fact that multiple
tasks are learned simultaneously. The correlations between
attributes are taken into account by [50], which also combines
attribute labels with low-level features for re-identification. Al-
though this approach achieves good performance, it uses hand-
designed image features and several independent classification
components. This makes the approach difficult to fully opti-
mise as the different components are trained independently.

In this work we propose to combine the Siamese network ar-
chitecture, used in [61], with multi-task learning as the basis of
our approach to tackling the person re-identification problem.
Although verification and identification tasks were combined

in a Siamese network architecture for face recognition [51],
as far as we know, this work is the first to apply this method
to full-body person re-identification. Our novel multi-task
learning framework will learn the embedding function making
use of similar and dissimilar image pairs, while simultaneously
training the network to perform identification of each person in
the training image pairs. Furthermore, we extend the multi-task
learning approach of [51] by training the network to perform
a diverse set of attribute labelling tasks, based on pose, sex,
and clothing. Use of a diverse set of related tasks, unlike the
single repeated task of [42], aims to improve the generalisation
performance of re-identification networks and help to prevent
over-fitting to a particular training set or camera layout.

III. PERSON RE-IDENTIFICATION ARCHITECTURE

A. Person Re-Identification using Neural Networks

The conventional Siamese network architecture (See Fig. 1)
consists of two identical copies of a sub-network G i.e.,
each sub-network has identical weights. During training, the
network is presented with image pairs from either the same or
differing classes. Given image pair (x1, x2), and label y ∈ 0, 1,
indicating whether the images in the pair are from the same
or different classes, a forward pass of each image through
sub-network G, with network parameters w (for notational
simplicity we will use w throughout to represent all the
network parameters i.e., the weights and biases), produces
vectors G(x1;w) and G(x2;w), which are low-dimensional
feature representations of the respective input images. The
Euclidean distance between the feature representations can
then be computed as

D(x1, x2;w) = ‖G(x1;w)−G(x2;w)‖2 (1)

The Euclidean distance between the feature representation of
each image is used for training the network to perform veri-
fication. For a training image pair (x1, x2), the cost function,
V , is dependent on whether the images are from the same, or
different people. We will first introduce the cost functions for
both cases, then we will show how these cost functions can
be combined. When x1 and x2 are images of the same person,
the cost function can be written as follows:

VS(x1, x2;w) =
1

2
D(x1, x2;w)2 (2)

Therefore, in the same person case, the cost increases as
the Euclidean distance between the feature representations
increases, and when the feature representations are identical,
the cost is zero. In the alternative case, when x1 and x2 are
images of different persons, the cost function can be written
as follows:

VD(x1, x2;w) =
1

2
(max(0,m−D(x1, x2;w)))2 (3)

In this case the cost increases as the Euclidean distance
between the feature representations decreases. In Eq. 3 the
variable m is known as the margin. When the distance between
the feature representations of both samples is greater than
the margin, the cost is set to zero. The margin therefore
encourages the network to concentrate on difficult cases where
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Fig. 1. Standard Siamese network architecture that can be trained to perform
verification, when presented with image pairs (x1,x2) from the same/different
class, using the cost function Eq. 4.

images from different classes produce similar features, thus
helping the network to better discriminate between similar and
non-trivially dissimilar images.

The above defined cost functions, VS and VD, can be
combined into a single cost function, V , capable of handling
both cases. Given a label y ∈ 0, 1, where y = 1 indicates that
the two images belong to the same class and y = 0 indicates
the images belong to different classes, the cost function can
be written as follows

V(x1, x2|y;w) = (1−y)VS(x1, x2;w)+yVD(x1, x2;w) (4)

Given Eq. 4, which is the cost function for a single image
pair, and given the full training set X , consisting of I image
pairs (xi1, x

i
2) ∈ X , where each image pair has a corresponding

verification label, yi ∈ {0, 1}, the cost function over the whole
training set can be written as

C(X) =
∑

(xi
1,x

i
2),y

i∈X

V(xi1, x
i
2|yi;w) (5)

Cost function Eq. 5 can be minimized using stochastic gradient
descent, by finding δC(X)

δw , the gradient of the cost function
with respect to the parameters w for each of the training
pairs. The implementation details of sub-network G will be
discussed in Section IV.

B. Multi-task Learning

Given the small size of data-sets available for person re-
identification, over-fitting is a serious concern. Over-fitting is
a problem encountered when training large neural networks
(or any learning algorithm with a large number of parameters)
on limited training data, and is characterised by a network
that performs well on the training examples (or well only
on a particular dataset), but performs poorly when presented
with novel examples not seen during training. To address the
risk of over-fitting, and hence to improve the generalisation
performance of the re-identification network, we propose to
modify the network architecture described in the previous
section to include multi-task learning, which will act as a
regularization method. Multi-task learning involves training
a network to complete several auxiliary tasks in addition
to the main problem of interest, and has been shown to
improve performance, if the axillary tasks have been chosen
to complement the main learning problem [10].

Person re-identification can be considered a verification
problem where the goal is to decide if two images depict
the same or different persons. To perform verification the two
images are compared, and if their similarity score is greater
than a pre-specified threshold the images are considered to
depict the same person. The cost function used for training
the network described in Section III-A, was designed for
verification, i.e. to produce a high similarity score for images
of the same person, and a low similarity score for images of
different people. To add multi-task learning to this network,
we assume that in addition to the verification task, we now
have K additional auxiliary tasks, where each auxiliary task
has an associated cost function Tk. As before, we are given
training set X , consisting of I image pairs, (xi1, x

i
2) ∈ X ,

where each image pair has a corresponding verification label,
yi ∈ {0, 1}, indicating whether the images depict the same
or different persons. For multi-task learning, the individual
images in each pair are now also associated with task specific
labels, li,k1 ∈ Lk and li,k2 ∈ Lk , where each li,k is the ground-
truth label for a particular auxiliary task, and where Lk is the
set of all labels available for task k ∈ K. The cost function
C defined in Eq. 5 can now be modified to include multi-task
learning as follows

Cm(X) =
∑

(xi
1,x

i
2)∈X

V(xi1, x
i
2|yi;w) +

∑
k

αkTk(G(xi1)|li,k1 ;w) +
∑
k

αkTk(G(xi2)|li,k2 ;w)
(6)

For a given training image pair, multi-task learning is per-
formed on both images. Each task has corresponding weight
αk allowing different tasks to be assigned different impor-
tances. Note that all the auxiliary tasks operate on the abstract
feature representation, G(x), of the input image, rather than
on the raw input image itself. This is because the goal of
using multi-task learning is to encourage the network to learn
an abstract feature representation, G(x), with better generali-
sation properties than one learned using only the verification
error signal. The above cost function, Cm, can be minimized
using stochastic gradient descent, by calculating the gradient
of Cm(X) with respect to the network parameters w.

Depending on the problem of interest a wide variety of
auxiliary tasks can be used to complement the main learning
problem. In our case, all the auxiliary tasks involve assigning
one of several mutually exclusive labels to each training
image. Therefore the softmax regression cost function can
be used, where the number of labels is customised to each
task. Softmax regression is a multi-class linear classifier that
calculates the probability of its input belonging to each class
i.e., its probability of having a specific label. For task k, with
associated label set, Lk, which contains the ground truth label,
lk ∈ Lk, the softmax regression cost function can be defined
as follows

Tk(z|lk;w) =
∑
j∈Lk

1{lk = j} log
ew

T
j z∑

q∈Lk
ew

T
q z

(7)

Where z is the input to the softmax function, which in our
case is G(xi1) or G(xi2) i.e., the feature representation of the
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input image, and where 1{lk = j} is an indicator function that
takes the value one when the prediction, j ∈ Lk, is equal to
the ground truth label lk, and takes the value zero otherwise.
The size of the label set, Lk, is customised for each specific
task, and each label is associated with an individual decision
boundary, wq , learned during training. The denominator on
the right hand side of Eq. 7 normalises the distribution over
all possible labels q ∈ Lk. The final predicted label is the
maximum likelihood class output by the softmax classifier.
This general framework allows incorporation of any task into
our multi-task network, in the following section we will
describe the individual auxiliary tasks in more detail.

1) Identification: The identification task is used to com-
plement the main verification task. To perform identification,
the network must predict the identity of the person in each
training image. A closed set of persons is used for training, and
the identity associated with each training image is known. By
inclusion of an identification task, in addition to verification,
the network is encouraged to learn an abstract feature represen-
tation capable of encoding the appearance information specific
to each person, while also fulfilling the verification objectives.
In order to perform the identification task, the network predicts
a label for each image using a softmax classifier, which takes
the abstract feature representation, z = G(x), of each image
as input as follows

TI(G(x)|p;w) =∑
j∈P

1{p = j} log
ew

T
j G(x)∑

q∈P e
wT

q G(x)
,∀x ∈ (x1 ∪ x2)

(8)

where the true identity, p = j, is known, and where the number
of labels in the softmax function is equal to the number of
people in the training set, P = I .

2) Attributes: Each training image depicts a person wearing
several known articles of clothing. For the attribute labelling
task, the network must predict the presence or absence of each
article of clothing included in the attribute set, in addition
to predicting the sex of the person. A complete list of the
attributes to be predicted is shown in Table I. Two different
methods of predicting attributes were tested: firstly equally
weighting each attribute, and secondly using different weights
for each attribute, with weights either learned from data or
based on prior information.

Each attribute labelling task was performed independently
by a separate softmax classifier. The feature representation,
G(x), of each image, was used as input to every softmax
classifier. All the softmax classifiers are defined in the same
way as Eq. 7, where the label set Lk is of size two, indicating
the presence or absence of each attribute. Where weighted
attribute classification tasks were used, the weights were
scaled so that the sum of all weights was one. The option
of predicting a vector of all attribute labels jointly using
regression loss was also tested for comparison. The effect of
the different attribute weighting and prediction methods on
re-identification accuracy will be discussed in Section V-E1.

3) Pose: The unconstrained nature of person re-
identification means the subject may be facing at an
unknown angle with respect to the camera. The pose

identification task asks the network to predict the direction,
θ, a person is facing with respect to the camera. A softmax
classifier Tθk(G(x)|θ;w) which takes G(x) as input is used
for this task. Due to the ambiguity in identifying the precise
angle a person is facing, pose is discretized into several
bins with centre angles of θ = [0, 45, 90, 180, 270] degrees
with respect to the camera. We note that although pose, by
itself, cannot be used for identification purposes, training the
network to perform this task may help it to discover features
which are useful for modelling human appearance, and which
may therefore be indirectly helpful for re-identification.

Network Architecture for Multi-task Learning: We propose
a network architecture using a separate softmax classifier for
each auxiliary task: identification, pose labelling, and each
attribute labelling task. In this architecture, the identification
and pose labelling tasks have weight, αI = αθ = 1. When
equal weighting is used, each attribute labelling task has
weight, αa = 1/A, where A is the number of attributes.
When independent weights are used, each task has weight,
αa = wa/

∑
j waj , where wa is the weight associated with a

specific task. This weighting is intended to prevent the attribute
labelling tasks from dominating the cost function, which could
reduce re-identification performance. The network architecture
after inclusion of multi-task learning is shown in Fig. 2.

Task 2 : Attribute 1

Fe
at

ur
e 

1
Fe
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ur

e 
2

Same VS

Diff VD

Task 2 : Attribute 1

Task N : Pose

Task N : Pose

(Verification)

Task 1 : Identification

Task 1 : Identification

G(x1)

G(x2)

Shared Parameters

Fig. 2. The architecture of the Siamese network including multi-task learning.
The network performs verification using Eq. 4, and auxiliary tasks 1 to
N, including identification, performed using softmax classifiers (See Eq. 8),
and attribute classification and pose labelling tasks using individual softmax
classifiers for each classification task (see Section III-B2).

IV. RE-IDENTIFICATION FRAMEWORK IMPLEMENTATION

A. Individual Convolutional Networks

The parallel copies of sub-network, G, used for learning the
mapping from images to the feature space, are implemented as
convolutional networks [33]. The convolutional network archi-
tecture takes advantage of the stationarity property of natural
images i.e., for a large set of natural images, the statistics
for the set of image patches at any given location are invari-
ant [44], [33]. This property allows sharing of network weights
between image areas, significantly reducing the total number
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of parameters that must be learned. In practice, each layer
of a convolutional network learns several small filters, which
are convolved with the layer’s input i.e., the previous layer’s
activation maps, to produce a new set of activation maps. Note
that the filters in the first convolutional layer are connected to
the colour channels of the input image. The activation maps
are typically passed through a non-linear activation function,
such as hyperbolic tangent, before further processing. Finally,
a pooling operation, such as max-pooling [25], which takes the
maximum response within a small window, is applied to the
activation maps to reduce their dimensionality and to provide
a small degree of translation invariance. Note that, while the
network weights can be learned using back-propagation, the
hyperparameters such as the number of convolutional layers,
the size of the convolutional filters in each layer, and the layer
widths i.e., the number of convolutional filters per-layer, are
usually set by selecting the values that maximise the network’s
accuracy on a set of held-out validation data.

The overall architecture of the convolutional network G
used for re-identification in our approach is shown in Fig. 3.
This network is composed of repeated convolutional and
pooling layers, followed by a final fully connected layer that
acts as the output. The hyperbolic tangent activation function
was used between each convolutional layer, while a linear
layer was used between the final convolutional layer and the
fully connected layer. The activation of neurons in the fully
connected layer gives the feature representation of the input
image. Dropout regularization [20] was used between the final
convolutional layer and the fully connected layer. Note that
no pre-processing was applied to the input image other than
converting to the YUV colour space and normalizing each
colour channel to have zero mean and unit variance.
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Fig. 3. Overview of the architecture of the convolutional network G(x).

B. Data augmentation

Many current re-identification datasets are small, in terms
of number of persons, and number of examples per-person.
For example, VIPeR [17] contains 632 persons, with two
images per person; each image captured by a different camera.
Following the standard testing protocol, each dataset is split
into 50% of persons used for training and 50% for testing. Due
to the small size of many available datasets, in comparison
to the number of network parameters to be learned (around
780,000), over-fitting is a serious concern. Therefore data-
augmentation [28] was used during training to artificially
increase the size and diversity of the training set.

Input images were resized to 64x64 pixels, as our convolu-
tional network implementation is optimized for square images.
During training each image was presented to the network
multiple times. At each presentation the image was subject to
random horizontal flipping with 50% probability, to help the
network learn invariance to the direction a person is facing.
In addition, rather than passing the whole 64x64 image to the
network during each training step, a random 56x56 pixel crop
was selected with uniform probability from the set of all 64
possible crops, for use as input. This helps the network to
learn invariance to small translations, which could occur in
a realistic scenario due to pedestrian detector inaccuracy. By
combining random horizontal flipping with random cropping,
the number of image pairs available for training the network
is increased by 128 times. Although these additional images
tend to be highly correlated, it is known that this type of data
augmentation can improve the performance of convolutional
networks [28], especially when training data is very limited.
We will show in Section V-C3 that use of data augmentation
is critical for obtaining good performance from our system.

C. Re-identification Testing Architecture

During testing the multi-task learning blocks were deacti-
vated as their main functionality is to regularize the training
process. Sub-network G was used alone to produce the feature
representation for each image, consisting of the activations of
the neurons in the final layer of G i.e. a low-dimensional vector
of real numbers.

To improve re-identification performance, data augmenta-
tion was used during testing, as in [23]. To calculate the
similarity-score between a given testing image and a given
gallery image, features were extracted from 10 samples (the
four corner crops, the centre crop, and their horizontal flips)
of the testing image and gallery image. The similarity-score
was then calculated as the mean Euclidean distance between
the features of all one hundred test/gallery image pairs, where
a smaller distance indicates two images are more similar.

The overall re-identification procedure was as follows:
Given each testing image from camera A, and a gallery of
316 images from camera B, the camera A testing images
were compared with all the gallery images using Euclidean
distance, as described above. The gallery images were then
ranked according to similarity and a CMC curve [15] was
produced for evaluation purposes.

V. EXPERIMENTS

Several re-identification datasets were used to evaluate
the proposed system: VIPeR [17], iLIDS [65], 3DPeS [4],
CAVIAR [8], and PETA [12]. The VIPeR and PETA datasets
were used in the experiments focused on multi-task learning,
due to the availability of attribute labels. Attribute and pose
labels for VIPeR are provided by [32]. PETA, is composed
of several common re-identification datasets, of which we use
a subset consisting of VIPeR, iLIDS, 3DPeS, and CAVIAR.
PETA provides a different set of attribute labels including the
type and colour of clothing. As per the standard testing pro-
tocol for re-identification, 10-fold cross-validation was carried
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out [15]. Within each cross validation fold, the datasets were
randomly partitioned into 50% of persons for training, and
50% for testing.

Details of the network architecture including the number of
convolutional layers, layer widths, and the convolutional filter
sizes are shown in Fig. 3. The network architecture, and hyper-
parameters such as the learning rate and number of training
epochs, were set using an initial random partitioning of the
VIPeR dataset into 50% training and 50% testing data. This
initial partition was not included during testing, and no further
attempt was made to fit the hyperparameters to the other
individual datasets. While this procedure could be seen as
over-fitting the hyperparameters to the VIPeR dataset, we show
in Section V-C that the network’s performance is not overly
sensitive to the values of these hyperparameters. Furthermore,
testing was also performed using additional datasets, not
seen during hyperparameter optimisation, to provide a better
indication of the system’s true performance (see Section V-F).

The number of training epochs was fixed at 600. During
each epoch the network was presented with all matching
image pairs once, and an equal number of randomly selected
mismatching image pairs. Training was carried out using
stochastic gradient descent, with a batch size of one, i.e. the
parameters were updated after showing the network each im-
age pair. The weights were initialised using the default Torch
initialisation, described in [34]. During training the learning
rate was linearly decreased from 1e-3 to 1e-5. Evaluation
was carried out using an Nvidia Tesla M2070, with training
taking around 10 seconds per epoch. Testing can be carried
out quickly as each image need only be passed through the
network once to produce a feature, which is saved for reuse.
Similarity scores between the gallery and an image can then
be computed quickly using a matrix vector product.

A. Training Analysis

During training, all network parameters were recorded every
ten epochs. This allows the network’s performance to be
compared between training epochs by using the saved weights
to calculate a CMC curve, then plotting the rank 1 accuracy
over time. In Fig. 4 we compare the rank 1 CMC for the
network trained using multi-task learning, and a version of the
network trained using only verification, for both the training
set and testing sets. We can see that when multi-task learning
is used, the training-set rank 1 CMC consistently increases,
and the testing rank 1 CMC asymptotically approaches ˜33%.
However, when the network is trained using verification only
i.e., a standard Siamese architecture, the training-set rank 1
CMC consistently increases, while the testing-set rank 1 CMC
does not significantly change. These trends suggest that this
version of the network is over-fitting to the training-set i.e., the
learned weights do not generalise well, as they do not improve
performance on the testing-set. This experiment provides ev-
idence that the use of multi-task learning (i.e., a combination
of verification, identification, and attribute labelling), helps to
prevent over-fitting and to improve the network’s ability to
perform re-identification, compared to using verification error
alone.
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Fig. 4. Comparing Rank-1 CMC accuracy on the VIPeR dataset as a function
of training epochs, for the network trained with Multi-Task Learning, and for
the network trained using verification only.

B. Multi-task Learning

This experiment explores the effect of multi-task learning
on re-identification performance for VIPeR and PETA. Pose
information was supplied with VIPeR, however this was not
available for PETA. In this experiment the network was
trained using the same test / train split and the same weight
initialisation, but with different sets of tasks. A CMC curve
for each set of tasks, on each dataset, is shown in Fig. 5.

The results in Fig. 5, which are consistent across both
datasets, indicate that using the identification task, in addition
to verification, may be key to achieving good performance.
The large boost in performance could be attributed to the fact
that each person has a unique identity, meaning the identifi-
cation task involves predicting from a diverse set of labels,
forcing the network to learn the subtle differences between
the appearances of individuals, rather than simply performing
verification by comparing image pairs. A further improvement,
achieving the best performance, occurs when the verification,
identification, and attribute labelling tasks are used together.
Use of attribute labelling together with verification produces a
large improvement in performance compared with verification
used alone. However, the relatively smaller improvement when
attribute labelling is used with verification and identification,
may be due to the success already achieved by identification
and the relative lack of diversity of the attribute labels. The
relative utility of the attribute classification and identification
tasks can be seen by comparing the curve for verification and
attributes with that of verification and identification.

While the identification task requires a highly diverse set of
labels to be predicted, in the attribute labelling task, the labels
for the VIPeR dataset show a lack of diversity, with positive
examples of certain attributes, such as Headphones or Sandals,
observed in only a small number of persons. Only the Sex
and Jeans attributes have an approximately balanced number
of positive and negative examples, which is reflected in the
observed attribute classification accuracies (See Section V-B1).
We hypothesise that if a more diverse and balanced set of
auxiliary labelling tasks were to be used, larger performance
gains may be observed.

It is interesting to note that pose classification task causes
a drop in performance on VIPeR. As explained in Sec-
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Fig. 5. CMC curve after multi-task training on VIPeR (top) and PETA
(bottom) with different sets of tasks.

tion III-B3, this is perhaps to be expected as re-identification
features should be invariant to pose. While other attributes
such as sex, clothing or identity help to discriminate between
individuals, pose may be different for the same individual
in different images. In light of these considerations, we
hypothesise that re-identification accuracy may be improved
by explicitly enforcing pose invariance in the learned feature
representation. This objective could be achieved using the
gradient reversal method proposed by [16], but we leave this
to future work.

1) Attribute and Pose Classification: While the primary
aim of using the auxiliary attribute classification tasks is to
help improve re-identification performance, it is interesting
to observe the network’s classification accuracy for these
tasks, as they may have applications independent of person
re-identification. In this experiment the network was trained
using a random 50% of the VIPeR dataset, and used to
perform attribute and pose classification on the remaining
50%. Due to the very unbalanced number of positive and
negative examples, results are reported in Table I in terms
of classification accuracy, precision, and recall.

The best performance, in terms of precision and recall,
occurs for the Sex, and Jeans attributes. This is perhaps un-
surprising as these attributes have an almost balanced number
of positive and negative examples in the training-set, which
makes training an accurate classifier easier. The situation is
reversed with the headphones, v-neck, stripes, and sandals
attributes, where the classifier accuracy, albeit high, is not
statistically significant due to the very unbalanced distribution
of positive and negative training examples. For these attributes
the vast majority of instances are negative, meaning a high
classification accuracy, with very low precision and recall, is

achieved by a classifier that always predicts the negative label
regardless of its input. The classification accuracy for the pose
labelling task is 67%, which is well above the level of chance
(˜20%). Overall, these results show that the best classification
accuracy occurs when the network is given a balanced number
of positive and negative examples for training. To obtain better
attribute classification performance with the given label set, the
training procedure would need to be modified to take the data
imbalance into account. Our current attribute classification
results compare favourably with [32], which obtained an
average classification accuracy of 59%, whereas our system
obtained 80%. For gender classification, our method compares
favourably with [9], which obtained a classification accuracy
of 80.62% on the frontal VIPeR images only, whereas we test
and train on all images regardless of pose.

TABLE I
ATTRIBUTE CLASSIFICATION ON THE VIPER DATASET, IN TERMS OF

CLASSIFICATION ACCURACY (%), PRECISION (PRE.), AND RECALL (REC.).
WE ALSO INCLUDE THE ENTROPY OF THE LABEL DISTRIBUTION (ENT.).

Attribute Acc. Pre. Rec. Ent. Attribute Acc. Pre. Rec. Ent.
Shorts 90 0.47 0.45 0.49 Stripes 91 0.25 0.04 0.40
Sandals 93 0.00 0.00 0.34 Sunglasses 75 0.35 0.21 0.68
Backpacks 65 0.52 0.39 0.94 H.phones 97 0.00 0.00 0.16
Jeans 81 0.75 0.71 0.93 S. Hair 65 0.65 0.66 0.99
Carrying 68 0.31 0.23 0.85 L. Hair 75 0.63 0.51 0.91
Logo 78 0.36 0.21 0.71 Sex 75 0.76 0.73 0.99
V-Neck 91 0.00 0.00 0.41 Skirt 75 0.50 0.29 0.27
OpenOuter 78 0.47 0.25 0.76 Pose 67 0.60 0.60 2.20

2) Attribute Utility : The attribute classification results in
the previous section suggest that some attributes may be
potentially more useful than others for improving performance.
Therefore, two experiments were performed to firstly, evaluate
the contribution of individual attributes, and secondly, to
explore a better way to combine attributes classification tasks
based on their reliability.

First, it is informative to examine the testing-set area under
the CMC curve for the network trained to jointly perform re-
identification and classification of a single attribute. Compar-
ing the area under the curve (AUC) with the system trained
without any additional attribute classification tasks shows how
each attribute affects re-identification accuracy. The results in
Fig. 6 show that the attributes which give the largest increase
in performance, compared with the system trained only to
perform re-identification, are again jeans and sex.

3) Weighted Attributes: Following the above idea (see Sec-
tion V-B2), we hypothesise that re-identification performance
could be improved by weighting the attributes in the overall
cost function i.e. by using a different αk value for each
attribute. Several weighting methods were compared: zero-
weighting i.e. no attribute classification tasks used, equal-
weighting of all attribute classification tasks i.e. α = 1/A, and
weighting each attribute classification task wa proportional to
the Shannon entropy of its label distribution, giving a higher
weight to attributes with a near-equal number of positive and
negative training examples, which may contribute more useful
discriminative information than attributes with a highly skewed
label distribution. In all cases the weights were normalised
to sum to one. For each weighting approach, the network
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Fig. 6. The area under the CMC curve (CMC AUC) for the system trained to
perform re-identification and a single attribute classification task. The AUC
values are relative to the AUC for the system trained without additional
attribute classification tasks.

TABLE II
THE CMC CURVES ON THE VIPER AND PETA DATASETS USING

DIFFERENT METHODS OF WEIGHTING THE ATTRIBUTE LABELLING TASKS.
THE VARIANCE AT EACH CMC IS SHOWN IN BRACKETS.

CMC
Dataset Weighting 1 2 3 4 5 10 20 50

VIPeR

Entropy 29.8 42.2 49.8 55.4 59.6 73.0 84.6 96.4
(4.2) (5.2) (9.1) (3.0) (1.6) (5.0) (2.3) (0.7)

Equal 28.2 41.0 48.4 53.8 58.4 72.2 84.8 96.2
(1.4) (7.0) (4.3) (2.6) (2.4) (2.3) (1.0) (0.7)

No Attr. 27.8 41.6 49.2 56.6 60.4 72.6 84.2 96.0
(4.3) (5.3) (1.3) (0.3) (0.8) (1.3) (2.7) (0.5)

PETA

Entropy 50.1 61.6 68.2 71.9 75.0 83.2 90.8 97.0
(4.8) (6.4) (2.6) (2.8) (3.8) (1.9) (2.7) (1.9)

Equal 50.1 61.6 68.3 71.6 74.5 82.9 90.3 96.8
(4.6) (3.9) (1.9) (2.8) (1.6) (2.6) (3.1) (2.2)

No Attr. 49.9 61.9 68.0 71.8 74.7 83.3 90.8 96.8
(1.9) (3.5) (6.7) (3.9) (5.2) (1.8) (4.0) (1.4)

was trained using the whole training-set, with the attribute
classification tasks appropriately weighted. Re-identification
was then performed on the testing-set. The CMC accuracy
for each weighting method is given in Table II for the VIPeR
and PETA datasets.

Overall it can be seen that use of attributes during training
generally gives higher performance than not using attributes,
and using attributes generally reduces the variance in perfor-
mance. The best testing performance in low ranks, including
rank 1, is given by entropy weighting. Entropy weighting does
not require learning of weights as the entropy is calculated
based on the distribution of attribute labels in the training
samples. This means that all training samples are available
for training the network, rather than learning the weights, with
the corresponding potential performance improvement that this
entails. Therefore, we can conclude that entropy weighting is a
convenient attribute weighting choice as no prior information
about the attributes is required for training.

C. Parameter Sensitivity

This experiment will investigate the importance of the main
network hyperparameters, such as the number of convolutional
layers, number of filters per convolutional layer (i.e., layer
width), and the length of the feature representation (number

of neurons in the final layer). The hyperparameters were
systematically varied, while keeping the test / train split
and weight initialisation constant, allowing their impact on
performance to be measured and compared.

1) Layer Width: In this experiment the layer width (i.e.,
the number of convolutional filters per-layer), and number of
neurons in the final network layer were varied. In order to
reduce the number of networks to be trained, the number
of first layer filters was fixed at 16, while the number of
filters in deeper layers was varied together between 32,64
and 128 filters, and the number of final layer neurons was
varied between 32, 64, and 128 neurons. Results are shown
in Table III for CMC 1, 5 and 10, for both simplicity, and as
these are arguably the most important CMC results.

We can see that increasing the layer width generally im-
proves performance. However, performance improves slowly
even when the number of filters is increased significantly.
Similarly, increasing the number of final layer neurons, while
holding the other parameters constant, also improves perfor-
mance, but again this approach gives diminishing returns. The
final row of Table III show performance in the limit, as the
layer width, and feature length, is increased to 256, giving
only a small improvement in performance while significantly
increasing the computational demands.

TABLE III
CMC ACCURACY WHEN VARYING THE NUMBER OF CONVOLUTIONAL

FILTERS PER LAYER (1ST, 2ND, AND 3RD LAYERS), AND THE NUMBER OF
NEURONS IN THE FULLY-CONNECTED LAYER (FINAL).

Network Layer Parameters CMC
1st 2nd 3rd Final 1 5 10
16 32 32 32 23 50 63
16 64 64 32 26 54 71
16 128 128 32 27 55 65
16 32 32 64 25 55 66
16 64 64 64 32 56 69
16 128 128 64 29 59 71
16 32 32 128 27 53 66
16 64 64 128 31 59 71
16 128 128 128 33 59 73
16 256 256 256 33 60 73

2) Number of Layers: An important hyperparameter of
any deep network is the number of layers used, as deeper
networks can give better performance than shallower net-
works [54], [49]. In this experiment the number of layers
was systematically varied. Note that, because the initial input
image was 64x64 pixels, and each convolutional layer is
followed by a max-pooling step which halves the size of the
activation map, a maximum of 4 layers were used. For all
the networks tested, the first layer always had 16, 5x5 pixel
convolutional filters, and all subsequent layers had 64, 5x5
convolutional filters. Re-identification performance, for CMC
Rank 1 to 50, as a function of the number of network layers
is shown in Fig. 7. We can see that as the number of layers is
increased, re-identification performance initially improves, and
then saturates after 3 layers i.e., the performance of a network
with 4 layers is almost identical to that of a network with 3
layers. These results may indicate that the amount of training
data available, or the training methods used, are insufficient
for training a very deep network.
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Fig. 7. The network’s CMC curve when different numbers of layers are
included in the convolutional network, G(x).

3) Data Augmentation: In this experiment the network was
trained with and without data augmentation, while keeping
all other parameters constant. Note that while the standard
testing procedure for finding the similarity between images
involves taking ten crops of 56x56 pixels from each image,
then finding the mean Euclidean distance between the features
of the crops, with data-augmentation disabled, only the centre
crop was used.

The results in Fig. 8 show that using data augmentation dur-
ing both training and testing gives the best performance, and
that using data augmentation during training alone produces
slightly poorer results. However, when data augmentation
is used during testing only, performance drops significantly,
in fact performance drops to below that observed when no
data-augmentation is used. This performance drop could be
attributed to a mismatch between the training and testing
conditions. These results confirm the importance of data-
augmentation for re-identification, where due to the small
number of examples per-person data augmentation signifi-
cantly increases the diversity of the training data, thus im-
proving performance.

D. Analysis of Feature Representation

An issue sometimes raised regarding neural networks is the
difficulty of understanding what the network is doing [62].
We therefore try to understand the image characteristics used
by the network when performing re-identification. Firstly, by
using artificially corrupted testing images to understand which
image regions the network considers important. And secondly,
by investigating the link between the activation of neurons in
the final network layer and specific image characteristics.

1) Image Region Importance: In this experiment, the im-
portance of each image region was visualised using a method
similar to [62]. A pre-trained network was presented with
an uncorrupted set of testing images, and the CMC curve
recorded for use as a baseline. One thousand testing iterations
were then carried out using the same images, but with each
image corrupted by a region filled with zeros. At the start of
each testing iteration, a new corruption region was randomly
generated, and held constant across all the testing images
during that iteration. At the end of each iteration, the decrease
in rank 1 CMC accuracy, compared with the baseline, as
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Fig. 8. Network’s CMC curve with different data augmentation (DA) methods.

well as the size and position of the corruption region, were
recorded. An example corrupted image is shown in Fig. 9.

The premise of this experiment is that the decrease in overall
CMC accuracy, when a region is corrupted, can be used to
infer the region’s importance for re-identification. To visualise
region importance we generate an image where each pixel p
has brightness proportional to

∑
r∈R 1 − (cr/b), where R is

the subset of all corruption regions that include pixel p, where
cr is the rank 1 CMC accuracy given corruption region r,
and where b is the baseline rank 1 CMC accuracy given no
corruption. Region importance is visualised in Fig. 9, showing
that the network has learned to assign higher importance to
the centre of the images, which are more likely to contain
discriminative information related to identity, than the edges,
which are more likely to contain background information.

Fig. 9. Left image shows an illustration of the corruption added to testing
images. Right image shows the heat-map of image region importance for
re-identification, where red areas are the most important, and blue the least.

2) Relating Neuron Activations to Image Features: To gain
an insight of the image characteristics learned by the network
for re-identification, we investigate the relationship between
input images and the activation of individual neurons in the
final layer. For example, we would like to know whether
individual neurons activate in response to specific items of
clothing, or in response to features such as colour.

To visualise the image characteristics that activate individual
neurons, we present a trained network with a large set of
person images I . For each image, i ∈ I , the activation,
xn,i, of final layer neuron n is recorded. We then calculate
an activation image, an, for each final-layer neuron, equal
to the weighted average of all the presented images i.e.,
an ∝

∑
i∈I wn,ii . Where the weight, wn,i, associated with

each image is wn,i = exn,i/
∑
i∈I e

xn,i i.e., images are
weighted in proportion to how strongly they activate neuron
n, with greatest emphasis on images that cause the strongest
activation. Finally, the (unweighted) mean of all the images is
subtracted from each an to produce the final activation image.
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This method can also be used to visualise the image character-
istics that cause the most negative activation of each final-layer
neuron by using inverse weightings i.e. w̄n,i = 1−wn,i. Some
example activation images are shown in Fig. 10.

By comparing the image characteristics that most and least
excite each neuron it seems that in many cases the network
has learned to detect colour contrasts, such as a difference in
colour between the top and bottom of a person’s clothing.
This type of feature is likely to be well preserved across
viewpoint and illumination changes. In other cases it seems
that certain neurons are responding to pose variation, for
example, compare the position of the legs in the second image,
top row, of Fig. 10, with the other images.

Fig. 10. Synthetic image-pairs for a random selection of final-layer neurons,
showing the weighted average of the testing images giving the most positive,
and most negative responses. For each pair, the positive response image is on
the left, and negative response image is on the right.

E. Person Re-Identification Accuracy

1) VIPeR: The CMC results for the VIPeR dataset, calcu-
lated using 10-fold cross-validation, are shown in Table IV and
are compared with published results from the literature. We
also show the results for a multi-label variant of our system
that predicts a vector of all attributes simultaneously (Ours
Multi-Label). The rank 1 performance of our system is approx-
imately 33%, which compares favourably with recent results
such as [2], [36], [64] and significantly outperforms [56].
The standard deviation of the rank 1 CMC accuracy across
the cross-validation runs was 3.2%, showing that performance
is consistent across different data splits and different network
initialisations. The performance of both variants of our system
is similar, however the softmax based architecture performs
marginally better for CMC ranks above 10. Therefore this
architecture is used in all following experiments as the high
CMC ranks could be considered more relevant in practical
applications. Our network’s performance is similar to that
of [61], which also makes use of a Siamese network archi-
tecture, but was trained using verification only. The network
in [61] is significantly larger than ours, with around 14 million
parameters, and uses a significantly different convolutional
network architecture. Our results are also comparable with [1]
which uses a new network layer to compare local patches,
and has around 2 million parameters. Our results show that a
much simpler network with only around 800, 000 parameters
can be trained using multi-task learning to produce near
identical performance to a network with a more complex
design. Therefore, our training approach has the advantage of
producing a network with improved computational efficiency.
Additionally, multi-task learning could be used during the
training of a network with a more complex architecture design
to further improve its performance. Finally, the output of the

network, within an ensemble of classifiers, could be fused with
other approaches to give higher overall performance.

Although other methods have been proposed that can
achieve higher performance on VIPeR, such as [55], [60],
[24], [40], our proposed multi-task learning approach is com-
plementary to these methods and could therefore contribute to
further performance improvements. Additionally, several of the
above mentioned methods use ensembles of re-identification
systems [55], [60] to achieve high performance on VIPeR, and
use hand-designed features [24], [40]. We suggest that while
hand-designed features may be appropriate for small datasets,
we expect that as larger datasets become available, automati-
cally learned features will start to perform better, as has been
the case in other image recognition applications [28]. Finally,
we note that none of the above mentioned methods report their
re-identification accuracy in the cross-dataset scenario, which
we argue gives a better indication of the system’s real world
performance. This could imply that over-fitting to VIPeR is
occurring, for example in [40] the within-dataset results on
VIPeR are very high, while those for PRID are much lower.

TABLE IV
CMC ACCURACY OF OUR SYSTEM ON THE VIPER DATASET, WITH 316

TESTING PERSONS, COMPARED WITH RESULTS FROM THE LITERATURE.

CMC Rank 1 5 10 20 30 40 50 100
Ours 33.6 62.9 76.5 87.6 92.4 94.8 96.5 99.1
Ours Multi-Label 33.1 62.8 77.3 88.5 93.8 96.3 97.4 99.4
NLML [24] 42.30 70.99 85.23 94.25 - - - -
KCCA [40] 37 - 85 93 - - 98 100
IDLA [1] 34.8 64 75 - - - - -
DML [61] 34.4 62.15 75.89 87.22 92.28 - 96.52 -
SM [64] 30.16 52.3 - - - - - -
LAFT [36] 29.6 - 69.31 - - - - -
RB [2] 30 - 75 87 - - 96 99
JLCF [56] 26.27 51.90 67.09 - - - - -
HIF [55] 39.3 73.0 84.6 92.5 - - - -
SCN [60] 37.8 68.5 81.2 90.4 - - - -

2) Additional Datasets: Although VIPeR is widely used for
assessing re-identification performance, there are many other
datasets available. These experiments may provide a better
indication of the network’s performance, as VIPeR was used
for setting the network’s hyperparameters, while the other
datasets act as unseen testing sets. In this scenario a new net-
work was trained and tested on each re-identification dataset
individually. Due to the small size of the datasets, this scenario
tests the re-identification performance of the network given
extremely limited training data. The network hyperparameters
and training procedure remained identical to those described
above for the VIPeR dataset (See Section IV). Within each
cross-validation fold, the dataset was randomly partitioned into
50% of persons for training and 50% of persons for testing.
For each testing-set person, a single randomly selected image
was used as their gallery image, and all other images are used
for testing. The CMC results, from 10-fold cross-validation,
for the iLIDS (p=59), CAVIAR (p=35), and 3DPeS (p=96)
datasets, where p is the number of testing people, are reported
in Table V.

The results in Table V show that the network can suc-
cessfully learn to perform re-identification even with a very
limited amount of training data, however performance can be
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further improved by better weight initialisation, which will be
discussed in the next experiment (See Section V-E3).

3) Pre-Training and Fine-Tuning: The final scenario of this
section investigates the effect of pre-training the network using
a larger dataset (VIPeR), then using the learned weights to
initialise training on a different dataset. This differs from the
standard method of using randomly initialised weights. It has
previously been shown that using a good weight initialisation
can significantly improve performance [52]. To use this tech-
nique, a network is first trained using a dataset for which there
is sufficient data e.g. VIPeR, the learned weights are then used
to initialise training of a new network on a second, potentially
much smaller, dataset. This procedure may take advantage of
the generalisation ability of neural networks i.e. the features
learned by one network can adapted for solving a variety of
related problems [48].

As in previous experiments, 50% of the VIPeR dataset was
used to train a re-identification network. The learned weights
were then used to initialise training on another re-identification
dataset. All the hyperparameters, such as the learning rate
and number of epochs, remained identical to those used in
previous experiments. This pre-training and testing procedure
was repeated 10-times for each dataset, where each dataset was
randomly partitioned into 50% training/testing parts. The CMC
results for the, iLIDS (p=59), CAVIAR (p=35), and 3DPeS
(p=96) datasets, where p is the number of testing people, are
shown in Table V.

TABLE V
CMC ACCURACY ON THE ILIDS, CAVIAR AND 3DPES DATASETS, WITH

AND WITHOUT INITIALIZING WEIGHTS BY PRE-TRAINING ON VIPER.

CMC
Pre-Train Dataset #Train #Test 1 5 10 20
VIPeR iLIDS 59 60 37.3 66.2 76.2 87.1
N/A iLIDS 59 60 32.8 59.3 72.2 85.7
VIPeR CAVIAR 36 36 38.2 66.7 81.2 95.2
N/A CAVIAR 36 36 29.1 58.6 74.7 93.6
VIPeR 3DPeS 96 96 38.2 63.7 75.4 86.6
N/A 3DPeS 96 96 32.3 56.3 69.1 81.2

The results show that pre-training can significantly im-
prove re-identification performance compared to using random
weight initialisation, giving approximately a 6% improvement
in rank1 CMC accuracy. Pre-training is especially important
for re-identification due to the very small number of training
examples for most datasets, compared to VIPeR. These results
can be compared with [58], which follows the same experi-
mental procedure, of using a 50% test/train split, however their
best reported results were produced by several variants of their
algorithm, whereas we maintain constant parameter settings
in all experiments. Their highest rank 1 CMC accuracy for
iLIDS is 38%, for CAVIAR 40.2%, and for VIPeR 32.3%,
which are comparable with our results using pre-training. On
the CAVIAR dataset, our method out-performs [45] which
obtains rank 1 CMC of 36.2, and which has the advantage
of using 5 gallery images per-person. On the 3DPeS dataset,
the accuracy of our method, 38%, using 1 gallery image per-
person, exceeds that of [43], which obtained a rank 1 CMC

TABLE VI
THE CROSS-DATASET AVERAGE AND INDIVIDUAL CMC CURVES OF THE

VIPER, ILIDS, 3DPES, AND CAVIAR DATASETS USING DIFFERENT
METHODS OF WEIGHTING THE ATTRIBUTE CLASSIFICATION TASKS. THE

HIGHEST VALUE FOR EACH CMC RANK HAS BEEN HIGHLIGHTED.

CMC
Train Test Weighting 1 5 10 20 50

Entropy 43.4 61.4 68.8 77.5 79.8
Average Average Equal 43.1 60.9 68.7 77.3 79.8

No Attr. 42.7 60.8 68.7 77.4 79.9
VIPeR iLIDS Entropy 50.4 75.2 85.0 92.6 97.6
VIPeR iLIDS No Attr. 49.2 74.6 86.2 92.0 97.6
VIPeR CAVIAR Entropy 81.6 92.2 94.6 98.2 -
VIPeR CAVIAR No Attr. 80.6 91.0 95.8 98.2 -
VIPeR 3DPeS Entropy 36.6 55.2 67.0 76.0 91.6
VIPeR 3DPeS No Attr. 34.4 55.0 66.2 77.4 93.4
iLIDS VIPeR Entropy 8.4 20.4 27.8 38.0 56.2
iLIDS VIPeR No Attr. 8.2 19.0 26.6 37.4 56
CAVIAR VIPeR Entropy 8.8 19.4 27.0 38.8 58.6
CAVIAR VIPeR No Attr. 8.8 20.0 27.8 38.8 57.6
3DPeS VIPeR Entropy 11.0 25.6 34.4 43.8 61.6
3DPeS VIPeR No Attr. 10.6 24.6 33.4 43.6 60.8

of 35.4% using 3 gallery images per-person, and 27.8% using
1 gallery image per-person.

F. Cross Data-set Testing

In realistic scenarios a re-identification system will be
trained offline with a specific dataset then used on unseen
real-world data. This requires the network to generalise from
its training dataset. We simulate this scenario by training on
one dataset and testing on several different datasets.

1) Weighted Attributes: We first investigate the effect of
training using attributes on cross-dataset re-identification per-
formance. A subset of PETA, consisting of VIPeR, iLIDS,
3DPeS, and CAVIAR was used. For each attribute weight-
ing method - no attributes, equally weighted, and entropy
weighted - each dataset was used to train a re-identification
network, which was then used to preform re-identification on
the remaining three datasets. Training used 100% of persons
in the training dataset, and testing used 50% of persons
in each testing dataset. This process was repeated for all
combinations of datasets used for either training or testing, and
the average re-identification accuracy was recorded for each
attribute weighting method. Results are reported in Table VI,
which also shows the results for a subset of the individual
combinations of training and testing datasets.

The results in Table VI, agree with those in Table II that
using entropy weighting of attributes improves performance
compared to the system trained without the use of attributes.
These results are evidence that using attributes, specifically
with entropy weighting, marginally improves the robustness
and generalisation properties of the features learned by the
network.

2) Comparison with Literature: This experiment tests the
generalisation performance of the re-identification network
by training and testing on several different combinations of
datasets. For each training dataset, 100% of the persons were
used for training, and for each testing dataset a randomly
selected 50% of persons were used for testing in each cross-
validation split. This follows the cross-dataset testing protocol
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TABLE VII
CROSS-DATASET RE-IDENTIFICATION ACCURACY USING A NETWORK THAT TRAINED USING ONE DATASET, THEN PERFORMING RE-IDENTIFICATION ON

THE ILIDS, CAVIAR, 3DPES, CUHK, AND PRID2011 DATASETS.

CMC
Train Dataset Test Dataset Test Persons 1 5 10 20 30 40 50
VIPeR iLIDS 119 29.7 49.2 60.5 73.1 79.9 84.9 88.6
VIPeR iLIDS 80 32.7 54.6 67.6 79.3 86.2 91.3 94.9
VIPeR CAVIAR 72 23.7 40.8 51.0 64.4 74.4 83.3 90.7
VIPeR 3DPeS 96 26.0 47.0 59.4 72.4 79.3 85.5 89.7
VIPeR CUHK 908 10.3 21.8 28.3 37.3 43.5 48.8 52.0
VIPeR PRID 100 9.8 19.5 25.8 33.3 41.0 47.8 52.3
VIPeR (DTRSVM [41]) PRID 100 4.6 - 17.25 22.9 28.1 - -
CUHK PRID 100 11 23.3 31.3 40.0 45.7 50.3 56.3
CUHK (IDML [61]) PRID 100 7.6 - 23.4 30.9 36.1 - -
CUHK VIPeR 316 16 36.3 45.7 57.3 66.3 74.0 78.3
CUHK (IDML [61]) VIPeR 316 16.27 - 46.27 59.94 70.13 - -
CUHK (DML [61]) VIPeR 316 16.17 - 45.82 57.56 64.24 - -
iLIDS VIPeR 316 9.7 19.0 27.7 38.0 47.0 53.3 59.0
iLIDS (IDML [61]) VIPeR 316 11.61 - 34.43 44.08 52.69 - -
iLIDS (DTRSVM [41]) VIPeR 316 8.26 - 31.39 44.83 55.88 - -
iLIDS PRID 100 6 17.3 23.3 31.7 38.7 46.0 49.7
iLIDS (IDML [61]) PRID 100 8 - 25.5 38.9 45.6 - -
iLIDS (DTRSVM [41]) PRID 100 3.95 - 18.85 26.6 33.2 - -
PRID VIPeR 316 9.7 22.3 30.3 40.0 48.7 55.7 61.7
PRID (DTRSVM [41]) VIPeR 316 10.9 - 28.2 37.69 44.87 - -

of [61], thus allowing for comparison with their published
results. For each training dataset an independent network
was trained, and then used to perform re-identification using
the images from several different re-identification datasets.
Training was performed with the VIPeR, CUHK, PRID-2011
and iLIDS datasets. The results of this experiment for the
VIPeR (p=316), iLIDS (p=119 and p=80), CAVIAR (p=72),
3DPeS (p=96) and CUHK (p=908) datasets, where p is the
number of people used in testing, are shown in Table VII.

The results in Table VII show that our cross-dataset rank
1 CMC performance is comparable to that of recent within-
dataset results (matched datasets in training and testing) ob-
tained by other approaches. Thus our rank 1 CMC of 32.7
on the iLIDS dataset with 80 testing persons is comparable
to [66], which achieves a rank 1 CMC of 32.6. Similarly, our
results for the CAVIAR and 3DPeS datasets are only slightly
poorer than [45], which achieves a rank 1 CMC of 33.4 on
3DPeS, and 36.2 on CAVIAR. Compared with [61] our cross-
dataset performance is similar when tested on VIPeR, and
better when tested on PRID2011, but with the computational
and practical advantages of our system using a much smaller
network (around one third the size). These results demonstrate
that our network trained on one dataset can learn a feature
representation that generalises well to different datasets.

VI. CONCLUSIONS

In this paper we have demonstrated a novel method for
person re-identification using a deep convolutional network.
We show that by using multi-task learning, consisting of
verification, identification, and attribute labelling; a convolu-
tional network with a simple architecture can be trained to
perform person re-identification at state-of-the-art levels. Our
experiments show that use of identification in conjunction with
verification is crucial to achieving high re-identification accu-
racy. As a side effect of the training process, our network is

capable of accurately classifying attributes related to clothing,
pose, and sex, from a single full body image, which could have
applications independent of person re-identification. We go on
to show that the features learned by the network generalise
well to unseen datasets by performing cross-dataset testing.
Finally, we note that our new multi-task training algorithm
is general enough that it could be applied to the training of
other re-identification networks to improve their performance
regardless of the underlying architecture.
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