3 research outputs found

    Hierarchical implicit surface joint limits to constrain video-based motion capture

    Get PDF
    To increase the reliability of existing human motion tracking algorithms, we propose a method for imposing limits on the underlying hierarchical joint structures in a way that is true to life. Unlike most existing approaches, we explicitly represent dependencies between the various degrees of freedom and derive these limits from actual experimental data. To this end, we use quaternions to represent individual 3 DOF joint rotations and Euler angles for 2 DOF rotations, which we have experimentally sampled using an optical motion capture system. Each set of valid positions is bounded by an implicit surface and we handle hierarchical dependencies by representing the space of valid configurations for a child joint as a function of the position of its parent joint. This representation provides us with a metric in the space of rotations that readily lets us determine whether a posture is valid or not. As a result, it becomes easy to incorporate these sophisticated constraints into a motion tracking algorithm, using standard constrained optimization techniques. We demonstrate this by showing that doing so dramatically improves performance of an existing system when attempting to track complex and ambiguous upper body motions from low quality stereo data

    Bridging the Gap between Detection and Tracking for 3D Human Motion Recovery

    Get PDF
    The aim of this thesis is to build a system able to automatically and robustly track human motion in 3–D starting from monocular input. To this end two approaches are introduced, which tackle two different types of motion: The first is useful to analyze activities for which a characteristic pose, or key-pose, can be detected, as for example in the walking case. On the other hand the second can be used for cases in which such pose is not defined but there is a clear relation between some easily measurable image quantities and the body configuration, as for example in the skating case where the trajectory followed by a subject is highly correlated to how the subject articulates. In the first proposed technique we combine detection and tracking techniques to achieve robust 3D motion recovery of people seen from arbitrary viewpoints by a single and potentially moving camera. We rely on detecting key postures, which can be done reliably, using a motion model to infer 3D poses between consecutive detections, and finally refining them over the whole sequence using a generative model. We demonstrate our approach in the cases of golf motions filmed using a static camera and walking motions acquired using a potentially moving one. We will show that this approach, although monocular, is both metrically accurate because it integrates information over many frames and robust because it can recover from a few misdetections. The second approach is based on the fact that the articulated body models used to represent human motion typically have many degrees of freedom, usually expressed as joint angles that are highly correlated. The true range of motion can therefore be represented by latent variables that span a low-dimensional space. This has often been used to make motion tracking easier. However, learning the latent space in a problem independent way makes it non trivial to initialize the tracking process by picking appropriate initial values for the latent variables, and thus for the pose. In this thesis, it will be shown that by directly using observable quantities as latent variables, this issue can be eliminated

    Using biomechanical constraints to improve video-based motion capture

    Get PDF
    In motion capture applications whose aim is to recover human body postures from various input, the high dimensionality of the problem makes it desirable to reduce the size of the search-space by eliminating a priori impossible configurations. This can be carried out by constraining the posture recovery process in various ways. Most recent work in this area has focused on applying camera viewpoint-related constraints to eliminate erroneous solutions. When camera calibration parameters are available, they provide an extremely efficient tool for disambiguating not only posture estimation, but also 3D reconstruction and data segmentation. Increased robustness is indeed to be gained from enforcing such constraints, which we prove in the context of an optical motion capture framework. Our contribution in this respect resides in having applied such constraints consistently to each main step involved in a motion capture process, namely marker reconstruction and segmentation, followed by posture recovery. These steps are made inter-dependent, where each one constrains the other. A more application-independent approach is to encode constraints directly within the human body model, such as limits on the rotational joints. This being an almost unexplored research subject, our efforts were mainly directed at determining a new method for measuring, representing and applying such joint limits. To the present day, the few existing range of motion boundary representations present severe drawbacks that call for an alternative formulation. The joint limits paradigm we propose not only overcomes these drawbacks, but also allows to capture intra- and inter-joint rotation dependencies, these being essential to realistic joint motion representation. The range of motion boundary is defined by an implicit surface, its analytical expression enabling us to readily establish whether a given joint rotation is valid or not. Furthermore, its continuous and differentiable nature provides us with a means of elegantly incorporating such a constraint within an optimisation process for posture recovery. Applying constrained optimisation to our body model and stereo data extracted from video sequence, we demonstrate the clearly resulting decrease in posture estimation errors. As a bonus, we have integrated our joint limits representation in character animation packages to show how motion can be naturally constrained in this manner
    corecore