4 research outputs found

    Selective retrieval of memory and concept sequences through neuro-windows

    Get PDF
    This letter presents a crosscorrelational associative memory model which realizes selective retrieval of pattern sequences. When hierarchically correlated sequences are memorized, sequences of the correlational centers can be defined as the concept sequences. The authors propose a modified neuro-window method which enables selective retrieval of memory sequences and concept sequences. It is also shown that the proposed model realizes capacity expansion of the memory which stores random sequences

    Fast combinatorial optimization with parallel digital computers

    Get PDF
    This paper presents an algorithm which realizes fast search for the solutions of combinatorial optimization problems with parallel digital computers. With the standard weight matrices designed for combinatorial optimization, many iterations are required before convergence to a quasioptimal solution even when many digital processors can be used in parallel, By removing the components of the eingenvectors with eminent negative eigenvalues of the weight matrix, the proposed algorithm avoids oscillation and realizes energy reduction under synchronous discrete dynamics, which enables parallel digital computers to obtain quasi-optimal solutions with much less time than the conventional algorithm

    Neural Distributed Autoassociative Memories: A Survey

    Full text link
    Introduction. Neural network models of autoassociative, distributed memory allow storage and retrieval of many items (vectors) where the number of stored items can exceed the vector dimension (the number of neurons in the network). This opens the possibility of a sublinear time search (in the number of stored items) for approximate nearest neighbors among vectors of high dimension. The purpose of this paper is to review models of autoassociative, distributed memory that can be naturally implemented by neural networks (mainly with local learning rules and iterative dynamics based on information locally available to neurons). Scope. The survey is focused mainly on the networks of Hopfield, Willshaw and Potts, that have connections between pairs of neurons and operate on sparse binary vectors. We discuss not only autoassociative memory, but also the generalization properties of these networks. We also consider neural networks with higher-order connections and networks with a bipartite graph structure for non-binary data with linear constraints. Conclusions. In conclusion we discuss the relations to similarity search, advantages and drawbacks of these techniques, and topics for further research. An interesting and still not completely resolved question is whether neural autoassociative memories can search for approximate nearest neighbors faster than other index structures for similarity search, in particular for the case of very high dimensional vectors.Comment: 31 page

    Neural Autoassociative Memories for Binary Vectors: A Survey

    Full text link
    corecore