915 research outputs found

    An AER Spike-Processing Filter Simulator and Automatic VHDL Generator Based on Cellular Automata

    Get PDF
    Spike-based systems are neuro-inspired circuits implementations traditionally used for sensory systems or sensor signal processing. Address-Event- Representation (AER) is a neuromorphic communication protocol for transferring asynchronous events between VLSI spike-based chips. These neuro-inspired implementations allow developing complex, multilayer, multichip neuromorphic systems and have been used to design sensor chips, such as retinas and cochlea, processing chips, e.g. filters, and learning chips. Furthermore, Cellular Automata (CA) is a bio-inspired processing model for problem solving. This approach divides the processing synchronous cells which change their states at the same time in order to get the solution. This paper presents a software simulator able to gather several spike-based elements into the same workspace in order to test a CA architecture based on AER before a hardware implementation. Furthermore this simulator produces VHDL for testing the AER-CA into the FPGA of the USBAER AER-tool.Ministerio de Ciencia e Innovación TEC2009-10639-C04-0

    Finite Computational Structures and Implementations

    Full text link
    What is computable with limited resources? How can we verify the correctness of computations? How to measure computational power with precision? Despite the immense scientific and engineering progress in computing, we still have only partial answers to these questions. In order to make these problems more precise, we describe an abstract algebraic definition of classical computation, generalizing traditional models to semigroups. The mathematical abstraction also allows the investigation of different computing paradigms (e.g. cellular automata, reversible computing) in the same framework. Here we summarize the main questions and recent results of the research of finite computation.Comment: 12 pages, 3 figures, will be presented at CANDAR'16 and final version published by IEEE Computer Societ

    Self-Healing Cellular Automata to Correct Soft Errors in Defective Embedded Program Memories

    Get PDF
    Static Random Access Memory (SRAM) cells in ultra-low power Integrated Circuits (ICs) based on nanoscale Complementary Metal Oxide Semiconductor (CMOS) devices are likely to be the most vulnerable to large-scale soft errors. Conventional error correction circuits may not be able to handle the distributed nature of such errors and are susceptible to soft errors themselves. In this thesis, a distributed error correction circuit called Self-Healing Cellular Automata (SHCA) that can repair itself is presented. A possible way to deploy a SHCA in a system of SRAM-based embedded program memories (ePM) for one type of chip multi-processors is also discussed. The SHCA is compared with conventional error correction approaches and its strengths and limitations are analyzed

    A CNN based hybrid approach towards automatic image registration

    Get PDF
    Image registration is a key component of spatial analyses that involve different data sets of the same area. Automatic approaches in this domain have witnessed the application of several intelligent methodologies over the past decade; however accuracy of these approaches have been limited due to the inability to properly model shape as well as contextual information. In this paper, we investigate the possibility of an evolutionary computing based framework towards automatic image registration. Cellular Neural Network has been found to be effective in improving feature matching as well as resampling stages of registration, and complexity of the approach has been considerably reduced using corset optimization. CNN-prolog based approach has been adopted to dynamically use spectral and spatial information for representing contextual knowledge. The salient features of this work are feature point optimisation, adaptive resampling and intelligent object modelling. Investigations over various satellite images revealed that considerable success has been achieved with the procedure. Methodology also illustrated to be effective in providing intelligent interpretation and adaptive resampling

    Hybrid Multiresolution Simulation & Model Checking: Network-On-Chip Systems

    Get PDF
    abstract: Designers employ a variety of modeling theories and methodologies to create functional models of discrete network systems. These dynamical models are evaluated using verification and validation techniques throughout incremental design stages. Models created for these systems should directly represent their growing complexity with respect to composition and heterogeneity. Similar to software engineering practices, incremental model design is required for complex system design. As a result, models at early increments are significantly simpler relative to real systems. While experimenting (verification or validation) on models at early increments are computationally less demanding, the results of these experiments are less trustworthy and less rewarding. At any increment of design, a set of tools and technique are required for controlling the complexity of models and experimentation. A complex system such as Network-on-Chip (NoC) may benefit from incremental design stages. Current design methods for NoC rely on multiple models developed using various modeling frameworks. It is useful to develop frameworks that can formalize the relationships among these models. Fine-grain models are derived using their coarse-grain counterparts. Moreover, validation and verification capability at various design stages enabled through disciplined model conversion is very beneficial. In this research, Multiresolution Modeling (MRM) is used for system level design of NoC. MRM aids in creating a family of models at different levels of scale and complexity with well-formed relationships. In addition, a variant of the Discrete Event System Specification (DEVS) formalism is proposed which supports model checking. Hierarchical models of Network-on-Chip components may be created at different resolutions while each model can be validated using discrete-event simulation and verified via state exploration. System property expressions are defined in the DEVS language and developed as Transducers which can be applied seamlessly for model checking and simulation purposes. Multiresolution Modeling with verification and validation capabilities of this framework complement one another. MRM manages the scale and complexity of models which in turn can reduces V&V time and effort and conversely the V&V helps ensure correctness of models at multiple resolutions. This framework is realized through extending the DEVS-Suite simulator and its applicability demonstrated for exemplar NoC models.Dissertation/ThesisDoctoral Dissertation Computer Science 201
    corecore