17 research outputs found

    Tensorized Self-Attention: Efficiently Modeling Pairwise and Global Dependencies Together

    Full text link
    Neural networks equipped with self-attention have parallelizable computation, light-weight structure, and the ability to capture both long-range and local dependencies. Further, their expressive power and performance can be boosted by using a vector to measure pairwise dependency, but this requires to expand the alignment matrix to a tensor, which results in memory and computation bottlenecks. In this paper, we propose a novel attention mechanism called "Multi-mask Tensorized Self-Attention" (MTSA), which is as fast and as memory-efficient as a CNN, but significantly outperforms previous CNN-/RNN-/attention-based models. MTSA 1) captures both pairwise (token2token) and global (source2token) dependencies by a novel compatibility function composed of dot-product and additive attentions, 2) uses a tensor to represent the feature-wise alignment scores for better expressive power but only requires parallelizable matrix multiplications, and 3) combines multi-head with multi-dimensional attentions, and applies a distinct positional mask to each head (subspace), so the memory and computation can be distributed to multiple heads, each with sequential information encoded independently. The experiments show that a CNN/RNN-free model based on MTSA achieves state-of-the-art or competitive performance on nine NLP benchmarks with compelling memory- and time-efficiency

    ReadNet: A Hierarchical Transformer Framework for Web Article Readability Analysis

    Full text link
    Analyzing the readability of articles has been an important sociolinguistic task. Addressing this task is necessary to the automatic recommendation of appropriate articles to readers with different comprehension abilities, and it further benefits education systems, web information systems, and digital libraries. Current methods for assessing readability employ empirical measures or statistical learning techniques that are limited by their ability to characterize complex patterns such as article structures and semantic meanings of sentences. In this paper, we propose a new and comprehensive framework which uses a hierarchical self-attention model to analyze document readability. In this model, measurements of sentence-level difficulty are captured along with the semantic meanings of each sentence. Additionally, the sentence-level features are incorporated to characterize the overall readability of an article with consideration of article structures. We evaluate our proposed approach on three widely-used benchmark datasets against several strong baseline approaches. Experimental results show that our proposed method achieves the state-of-the-art performance on estimating the readability for various web articles and literature.Comment: ECIR 202
    corecore