87,706 research outputs found

    Deep Reinforcement Learning and sub-problem decomposition using Hierarchical Architectures in partially observable environments

    Get PDF
    Reinforcement Learning (RL) is based on the Markov Decision Process (MDP) framework, but not all the problems of interest can be modeled with MDPs because some of them have non-markovian temporal dependencies. To handle them, one of the solutions proposed in literature is Hierarchical Reinforcement Learning (HRL). HRL takes inspiration from hierarchical planning in artificial intelligence literature and it is an emerging sub-discipline for RL, in which RL methods are augmented with some kind of prior knowledge about the high-level structure of behavior in order to decompose the underlying problem into simpler sub-problems. The high-level goal of our thesis is to investigate the advantages that a HRL approach may have over a simple RL approach. Thus, we study problems of interest (rarely tackled by mean of RL) like Sentiment Analysis, Rogue and Car Controller, showing how the ability of RL algorithms to solve them in a partially observable environment is affected by using (or not) generic hierarchical architectures based on RL algorithms of the Actor-Critic family. Remarkably, we claim that especially our work in Sentiment Analysis is very innovative for RL, resulting in state-of-the-art performances; as far as the author knows, Reinforcement Learning approach is only rarely applied to the domain of computational linguistic and sentiment analysis. Furthermore, our work on the famous video-game Rogue is probably the first example of Deep RL architecture able to explore Rogue dungeons and fight against its monsters achieving a success rate of more than 75% on the first game level. While our work on Car Controller allowed us to make some interesting considerations on the nature of some components of the policy gradient equation

    Bloom-epistemic and sentiment analysis hierarchical classification in course discussion forums

    Get PDF
    Online discussion forums are widely used for active textual interaction between lecturers and students, and to see how the students have progressed in a learning process. The objective of this study is to compare appropriate machine-learning models to assess sentiments and Bloom’s epistemic taxonomy based on textual comments in educational discussion forums. The proposed method is called the hierarchical approach of Bloom-Epistemic and Sentiment Analysis (BE-Sent). The research methodology consists of three main steps. The first step is the data collection from the internal discussion forum and YouTube comments of a Web Programming channel. The next step is text preprocessing to annotate the text and clear unimportant words. Furthermore, with the text dataset that has been successfully cleaned, sentiment analysis and epistemic categorization will be done in each sentence of the text. Sentiment analysis is divided into three categories: positive, negative, and neutral. Bloom’s epistemic is divided into six categories: remembering, understanding, applying, analyzing, evaluating, and creating. This research has succeeded in producing a course learning subsystem that assesses opinions based on text reviews of discussion forums according to the category of sentiment and epistemic analysis

    A Hybrid Approach for Aspect-Based Sentiment Analysis Using Deep Contextual Word Embeddings and Hierarchical Attention

    Full text link
    The Web has become the main platform where people express their opinions about entities of interest and their associated aspects. Aspect-Based Sentiment Analysis (ABSA) aims to automatically compute the sentiment towards these aspects from opinionated text. In this paper we extend the state-of-the-art Hybrid Approach for Aspect-Based Sentiment Analysis (HAABSA) method in two directions. First we replace the non-contextual word embeddings with deep contextual word embeddings in order to better cope with the word semantics in a given text. Second, we use hierarchical attention by adding an extra attention layer to the HAABSA high-level representations in order to increase the method flexibility in modeling the input data. Using two standard datasets (SemEval 2015 and SemEval 2016) we show that the proposed extensions improve the accuracy of the built model for ABSA.Comment: Accepted for publication in the 20th International Conference on Web Engineering (ICWE 2020), Helsinki Finland, 9-12 June 202

    Enhanced news sentiment analysis using deep learning methods

    Get PDF
    We explore the predictive power of historical news sentiments based on financial market performance to forecast financial news sentiments. We define news sentiments based on stock price returns averaged over one minute right after a news article has been released. If the stock price exhibits positive (negative) return, we classify the news article released just prior to the observed stock return as positive (negative). We use Wikipedia and Gigaword five corpus articles from 2014 and we apply the global vectors for word representation method to this corpus to create word vectors to use as inputs into the deep learning TensorFlow network. We analyze high-frequency (intraday) Thompson Reuters News Archive as well as the high-frequency price tick history of the Dow Jones Industrial Average (DJIA 30) Index individual stocks for the period between 1/1/2003 and 12/30/2013. We apply a combination of deep learning methodologies of recurrent neural network with long short-term memory units to train the Thompson Reuters News Archive Data from 2003 to 2012, and we test the forecasting power of our method on 2013 News Archive data. We find that the forecasting accuracy of our methodology improves when we switch from random selection of positive and negative news to selecting the news with highest positive scores as positive news and news with highest negative scores as negative news to create our training data set.Published versio

    Knowledge Graph semantic enhancement of input data for improving AI

    Full text link
    Intelligent systems designed using machine learning algorithms require a large number of labeled data. Background knowledge provides complementary, real world factual information that can augment the limited labeled data to train a machine learning algorithm. The term Knowledge Graph (KG) is in vogue as for many practical applications, it is convenient and useful to organize this background knowledge in the form of a graph. Recent academic research and implemented industrial intelligent systems have shown promising performance for machine learning algorithms that combine training data with a knowledge graph. In this article, we discuss the use of relevant KGs to enhance input data for two applications that use machine learning -- recommendation and community detection. The KG improves both accuracy and explainability

    Effectiveness of Corporate Social Media Activities to Increase Relational Outcomes

    Get PDF
    This study applies social media analytics to investigate the impact of different corporate social media activities on user word of mouth and attitudinal loyalty. We conduct a multilevel analysis of approximately 5 million tweets regarding the main Twitter accounts of 28 large global companies. We empirically identify different social media activities in terms of social media management strategies (using social media management tools or the web-frontend client), account types (broadcasting or receiving information), and communicative approaches (conversational or disseminative). We find positive effects of social media management tools, broadcasting accounts, and conversational communication on public perception
    • …
    corecore