
AlmaMater Studiorum · Università di Bologna

Science School

Master Degree in Computer Science

Deep Reinforcement Learning and sub-problem
decomposition using Hierarchical Architectures

in partially observable environments

Supervisor:

Prof. Andrea Asperti

Presented by:

Francesco Sovrano

Session II

Accademic Year 2017/2018

To anyone with a little bit of madness

Introduction

Reinforcement Learning (RL) is an area of machine learning which studies how an

agent should take actions in an environment (or problem) having the goal of maximiz-

ing some cumulative reward. One of the main differences between RL and supervised

learning is the fact that in RL the actions/decisions taken by the agent may change the

environment, while in supervised learning this is not true.

The RL framework is very generic and can be used to tackle different classes of prob-

lems. In recent years, there has been a huge amount of work on the application of deep

learning techniques in combination with Reinforcement Learning (the so called Deep

Reinforcement Learning), specially for the development of automatic agents for differ-

ent kind of games. Game-like environments provide realistic abstractions of real-life

situations, creating new and innovative dimensions in the kind of problems that can be

addressed by means of neural networks.

Reinforcement Learning is based on the Markov Decision Process (MDP) framework,

but not all the problems of interest can be modelled with MDPs because some of

them have non-markovian dependencies. To handle them, one of the solutions pro-

posed in literature is Hierarchical Reinforcement Learning (HRL). HRL takes inspira-

tion from hierarchical planning in artificial intelligence literature and it is an emerging

sub-discipline for RL, in which RL methods are augmented with some kind of prior

knowledge about the high-level structure of behaviour in order to decompose the under-

lying problem into simpler sub-problems.

The high-level goal of our thesis is to investigate the advantages that a HRL approach

may have over a simple RL approach. Thus, we study problems of interest (rarely tack-

led by mean of RL) like Sentiment Analysis, Rogue and Car Controller, showing how

i

INTRODUCTION

the ability of RL algorithms to solve them in a partially observable environment is af-

fected by using (or not) generic hierarchical architectures based on RL algorithms of

the Actor-Critic family. Remarkably, we claim that especially our work in Sentiment

Analysis is very innovative for RL, resulting in state-of-the-art performances; as far as

the author knows, Reinforcement Learning (RL) approach is only rarely applied to the

domain of computational linguistic and sentiment analysis. Furthermore, our work on

the famous video-game Rogue is probably the first example of Deep RL architecture

able to explore Rogue dungeons and fight against its monsters achieving a success rate

of more than 75% on the first game level. While our work on Car Controller allowed

us to make some interesting considerations on the nature of some components of the

policy gradient equation (Section 1.3.2.1).

Anyway, in order to give a proper background to the reader, in chapter 1 we provide

some basic information on Reinforcement Learning and the underlying Markov Deci-

sion Process (MDP) and Partially Observable MDP frameworks, while in chapter 2 we

enumerate some of the most recent and important Deep RL algorithms of the Actor-

Critic family, showing details of the inner mechanisms of the algorithms subset used in

our experiments: A3C [MBM+16a], GAE [SML+15], PPO [SWD+17].

In chapter 3 we present some interesting state-of-the-art techniques to speed up Rein-

forcement Learning, describing more in detail those we are going to adopt in the exper-

iments, including HRL.

In chapter 4 we introduce the environments used for our experiments, making distinc-

tion between those who have a discrete action space and those who have a continuous

one. In the same chapter we also briefly describe the adopted software framework.

Finally, in chapter 5 we describe the results of three different experiments, on three

different environments and neural networks, using Generic HRL techniques based on

simple variations of the Options Framework (Section 3.4.1).

In all these experiments the hierarchical architecture is made by an A3C partitioner able

to partition the state space into n different sub-spaces for respectively n different A3C

workers.

Our first experiment (Section 5.1) is conducted on Sentiment Analysis using the SEN-

TIPOLC 2016 environment described in Section 4.1.1.2, and we show that in this envi-

ii

INTRODUCTION

ronment the benefits of HRL may be significant. The main challenge of this experiment

was to model the underlying problem as MDP, in order to use the RL framework.

Our second experiment (Section 5.2) is conducted on the Rogue environment introduced

in Section 4.1.1.1, and we show that in the chosen environmental settings the benefits of

HRL do not seem to be significant. The main challenges of this experiment were proba-

bly: to choose a good state representation, to tackle the exploration problem mentioned

in Chapter 3, and to find a useful generic hierarchical architecture.

Our last experiment (Section 5.3) is conducted on the Car Controller environment de-

scribed in Section 4.1.2.1, and we show that in this particular environment there are no

evident benefits in using HRL. The biggest challenge of this second experiment was

probably to understand how to model a policy for continuous action-spaces using a nor-

mal distribution.

iii

iv

Contents

1 Background Information 1

1.1 Markov Decision Process . 1

1.2 Partially Observable Markov Decision Process 2

1.3 Reinforcement Learning . 3

1.3.1 Value function approximation 5

1.3.1.1 Monte Carlo methods 6

1.3.1.2 Temporal Difference and N-step methods 7

1.3.2 Policy function approximation 7

1.3.2.1 On-policy gradient 8

1.3.2.2 Off-policy Gradient 9

1.3.3 Actor-Critic . 9

2 State-of-the-art for Actor-Critic 10

2.1 A3C . 11

2.2 GAE . 12

2.3 PPO . 13

3 Interesting methods to speed up Reinforcement Learning 15

3.1 Experience Replay . 16

3.2 Intrinsic Rewards for Exploration . 17

3.2.0.1 Count-based exploration 17

3.2.0.2 Curiosity driven exploration 18

3.3 Unsupervised auxiliary tasks . 18

v

CONTENTS

3.4 Hierarchical Deep Reinforcement Learning 19

3.4.1 Options framework . 20

4 Software framework used for experiments 22
4.1 Environments . 23

4.1.1 Discrete action space . 23

4.1.1.1 Rogue . 23

4.1.1.2 SENTIPOLC 2016 24

4.1.2 Continuous action space . 25

4.1.2.1 Car Controller . 25

4.2 Framework . 27

4.2.1 Experience Replay . 29

4.2.2 Count-Based Exploration . 30

4.2.3 Statistics for evaluation metrics 31

5 Experiments on Generic Hierarchical Reinforcement Learning 33
5.1 Experiment 1 - Sentiment Analysis . 34

5.1.1 Related Work . 35

5.1.2 Sentiment Analysis as Markov Decision Process 35

5.1.3 Architecture . 37

5.1.4 Document Preprocessing . 37

5.1.5 State representation . 39

5.1.6 Multi-Task Training . 40

5.1.7 The neural network . 41

5.1.8 Reward shaping . 42

5.1.9 Over-fitting mitigation . 43

5.1.10 Hierarchical Structure . 43

5.1.11 Hyper-parameters tuning . 44

5.1.12 Experiment Results and Evaluation 46

5.2 Experiment 2 - Rogue . 49

5.2.1 State Representation . 50

5.2.2 Reward Function . 51

vi

CONTENTS

5.2.3 Action Space . 52

5.2.4 Neural Network . 52

5.2.5 Hierarchical Structure . 53

5.2.6 Experiment Results . 54

5.2.6.1 Test 1 - HRL benefits 55

5.2.6.2 Test 2 - Generic vs Naive HRL 56

5.2.6.3 Test 3 - Proximal Optimization 57

5.2.6.4 Test 4 - Count-based exploration and Experience Replay 58

5.3 Experiment 3 - Car Controller . 60

5.3.1 State Representation . 62

5.3.2 Reward Function . 63

5.3.3 Action Space . 65

5.3.3.1 An interesting hypothesis on ψ 66

5.3.4 Neural Network . 66

5.3.5 Experiment Results . 67

5.3.5.1 Test 1 - Non-negative ψ 68

5.3.5.2 Test 2 - HRL and non-markovian temporal dependen-

cies . 69

5.3.5.3 Test 3 - Experience replay 72

5.3.5.4 Test 4 - Proximal Optimization 73

6 Conclusions 75

Appendices 77

A Legend 79

vii

List of Figures

1.1 Markov Decision Process: Basic operations 2

1.2 Markov Decision Process: Example from Wikipedia of a simple MDP

with three states (green circles) and two actions (orange circles), with

two rewards (orange arrows) . 3

1.3 Partially Observable Markov Decision Process: Example of POMDP 4

1.4 Reinforcement Learning: Algorithms families 5

2.1 State-of-the-art for Actor-Critic: A3C overview 11

2.2 State-of-the-art for Actor-Critic: A3C vs A2C 12

3.1 Hierarchical Deep RL: Option critic architecture 21

4.1 Software framework: The two-dimensional ASCII-based graphical in-

terface of Rogue . 24

4.2 Software framework: Example of car overtaking random obstacles on

a random road in the Car Controller environment 27

5.1 Experiment 1 - Sentiment Analysis: Neural networks architecture . . 41

5.2 Experiment 1: Example of confusion matrix; in predictive analytics,

a table of confusion (sometimes also called a confusion matrix), is a

table with two rows and two columns that reports the number of false

positives, false negatives, true positives, and true negatives. 42

5.3 Experiment 1 - Sentiment Analysis: Hierarchical Structure workload . 45

5.4 Experiment 1 - Sentiment Analysis: Training statistics; Part 1 46

5.5 Experiment 1 - Sentiment Analysis: Training statistics; Part 2 47

viii

LIST OF FIGURES

5.6 Experiment 2 - Rogue: Neural network. The output size of each layer

is shown between brackets. 53

5.7 Experiment 2 - Rogue: Hierarchical structure 54

5.8 Experiment 2 - Rogue: Training statistics of the test conducted to un-

derstand the effects of HRL . 57

5.9 Experiment 2 - Rogue: Training statistics of the test conducted to un-

derstand the effects of the partitioner granularity hyper-parameter . . . 58

5.10 Experiment 2 - Rogue: Training statistics of the test conducted to un-

derstand the effects of sharing layers in the hierarchical structure . . . 59

5.11 Experiment 2 - Rogue: Training statistics of the test conducted to com-

pare naive and generic HRL . 59

5.12 Experiment 2 - Rogue: Training statistics of the test conducted to un-

derstand the effects of proximal optimization 60

5.13 Experiment 2 - Rogue: Training statistics of the test conducted to un-

derstand the effects of count-based exploration 61

5.14 Experiment 3 - Car Controller: Neural network architecture. The

output size of each layer is shown between brackets, and h = 2, w = 5,

c = 2, e = 4. 67

5.15 Experiment 3 - Car Controller: Training statistics of the test con-

ducted to investigate the information theory interpretation of entropy . . 69

5.16 Experiment 3 - Car Controller: Training statistics of the test con-

ducted to understand the role of temporal dependencies 70

5.17 Experiment 3 - Car Controller: Training statistics of the test con-

ducted to understand the role of HRL 71

5.18 Experiment 3 - Car Controller: Training statistics of the test con-

ducted to understand the role of experience replay 72

5.19 Experiment 3 - Car Controller: Training statistics of the test con-

ducted to understand the role of PVO 74

ix

Pseudo-codes

5.1 Experiment 3 - Car Controller: Reward function Python code 64

x

List of Tables

5.1 Experiment 1 - Sentiment Analysis: Test set results: Precision and

recall, scaled by 100 . 48

5.2 Experiment 1 - Sentiment Analysis: Test set results: F1 scores, scaled

by 100 . 48

5.3 Experiment 2 - Rogue: Main differences between [ACS18] and Exper-

iment 2 . 49

xi

Chapter 1

Background Information

Reinforcement Learning (RL) is an area of machine learning which studies how an

agent should take actions in an environment (or problem) having the goal of maximizing

some cumulative reward.

In this chapter we try to give to the reader the necessary background information re-

quired for understanding what RL is. For this reason we firstly introduce the Markov

Decision Process (MDP) framework at the foundations of RL and then we approach

Partially Observable MDPs and the main RL algorithms families.

1.1 Markov Decision Process

MDPs provide a mathematical framework for modelling sequential decision-making

in situations where the results are partially random and partly under the control of a

decision maker/agent.

More in detail, an MDP is a probabilistic control process defined over discrete time

intervals. At each time interval t, the process is in some state st and the agent chooses

some action at. When the agent chooses at, it modifies the environment by passing from

state st to the state st+1 and receives a feedback (called reward rt) on the goodness of

at results. The agent goal is to maximize the total cumulative reward, which affects the

actions policy. A summary image of the aforementioned process is shown in Fig.1.1.

An MDP is a Markov model and it is defined by a tuple of 5 values:

1

1. Background Information

state s t+1

state s
reward r

action a t
t

t

Environment

Agent

Figure 1.1: Markov Decision Process: Basic operations

• S : a finite set of states.

• A: a finite set of actions.

• P(st+1|at ∧ st): a function defining the probability of reaching state st+1 at time

t + 1 starting from state st and executing action at at time t.

• R(st, at): a function to define the reward rt obtained by reaching the state st+1 at

the time instant t + 1 starting from state st by executing the action at at the time

instant t.

• γ ∈ [0, 1]: the discount factor. It represents the difference in importance between

present and future rewards. Values close to 0 are awarded when present rewards

are more important than future rewards.

In an MDP the state transition probabilities must be determined solely and exclusively

by the current state and action, this property is called Markov’s property. In other words,

a stochastic process has the property of Markov if, given the present, the future does not

depend on the past. More formally we have:

P(S t = st|S t−1 = st−1, . . . , S 0 = s0) = P(S t = st|S t−1 = st−1) (1.1)

1.2 Partially Observable Markov Decision Process

A Markov decision process is called partially observable (POMDP) when the state

st is not completely known. A POMDP models an agent decision process in which it

is assumed that the system dynamics are determined by an MDP, but the agent cannot

directly observe the underlying state. A POMPD is a generalization of a MPD. The

2

1.3 Reinforcement Learning

Figure 1.2: Markov Decision Process: Example from Wikipedia of a simple MDP with

three states (green circles) and two actions (orange circles), with two rewards (orange

arrows)

POMDP framework is general enough to model a variety of real-world sequential deci-

sion processes. Applications include robot navigation problems, machine maintenance,

and planning under uncertainty in general.

A discrete-time POMDP models the relationship between an agent and its environment.

Formally, a POMDP is a MDP with a set of observations Ω and a set of conditional

observation probabilities Oat(st+1, ot). Thus a POMPD is a 7-tuple (S , A, P, R, γ, Ω,

O). At time period t, the environment is in some state st, but the agent observes only ot

with probability O(ot|st). The agent takes an action at, which causes the environment to

transition to state st+1 with probability P(st+1|at ∧ st). As result the agent receives a new

observation ot+1 which depends on the new state of the environment. Finally, the agent

receives a reward r = Rat(st, st+1). The process is then iterated until a terminal state is

reached.

1.3 Reinforcement Learning

Reinforcement Learning (RL) is an area of machine learning which studies how an

agent should take actions in an environment (or problem) having the goal of maximiz-

ing some cumulative reward. One of the main differences between RL and supervised

3

1. Background Information

Figure 1.3: Partially Observable Markov Decision Process: Example of POMDP

learning is the fact that in RL the actions/decisions taken by the agent may change the

environment, while in supervised learning this is not true.

RL can solve MDPs without explicit specification of the transition probabilities. The

goal of reinforcement learning is to maximize the expected total reward from all actions

performed in the future:

E[R(s0, a0) + γR(s1, a1) + · · · + γnR(sn, an)] = E[
∑

n

γnR(sn, an)] (1.2)

Not every action immediately gives a reward/feedback, sometimes you need long se-

quences of actions in order to get a reward, but future actions have not been performed

yet. This means that the less frequent (the more sparse) are the rewards, the harder is

for the algorithm to learn.

In order to solve the expected total reward problem we have to define a policy π : S →

A. A policy is a function that takes the current state st and outputs an optimal action and

this policy may be deterministic or stochastic.

For a MDP, an optimal deterministic policy always exists [Bel13]. An Optimal Policy is

a policy where you are always choosing the action that maximizes the expected cumu-

lative reward. The optimal policies may be found using the Bellman Optimal equation

and Dynamic Programming (DP) techniques [Bel13]:

π(st) = arg max
at

∑
st+1

P(st+1|at ∧ st) · (R(st, at) + γV(st+1))

 (1.3)

V(st) =
∑
st+1

P(sπ(st)|at ∧ st) · (R(st, π(st)) + γV(st+1)) (1.4)

4

1.3 Reinforcement Learning

DP approaches update estimates based on other estimates (one step ahead), thus they

assume complete knowledge of the environment (the MDP), but in practice this is not

possible and even assuming that this is possible, the applicability of dynamic program-

ming to many important problems is limited by the enormous size of the underlying

state spaces. This limitation is called curse of dimensionality [Bel13]. Neuro-dynamic

programming (also known as “Reinforcement Learning” in the Artificial Intelligence

literature) uses neural networks and other approximation architectures to overcome the

curse of dimensionality [Ber08].

The starting points for the RL methodology are two fundamental dynamic program-

ming algorithms: policy iteration and value iteration. In the first approach, we define

the parameters of a value function that quantifies the maximum cumulative reward ob-

tainable from a state belonging to the state space. In mathematical terms, the goal is to

approximate a solution to the Bellman equation, so that we can build optimal policies.

While, in the policy-based approach the policy parameters are tuned in a direction of

improvement.

In Fig. 1.4 a simple overview of the RL families is shown.

Figure 1.4: Reinforcement Learning: Algorithms families

1.3.1 Value function approximation

Value-based approaches try to find a policy that maximizes the cumulative return by

keeping a set of expected returns estimates for some policy π. Usually π is either the

“current” policy or the optimal one. An algorithm that uses the current policy is called

5

1. Background Information

on-policy algorithm, while an algorithm using the optimal one is called off-policy.

In value-based methods, a policy is defined optimal if it achieves the best expected

return from any initial state. To define optimality in a formal manner, we have to define

the value of a policy π by

Vπ(s) = Eπ[Rt|s = st] (1.5)

where Rt =
∑∞

k=0 γ
krt+k is the total cumulative reward from time starting at t. Thus, the

optimal value function is V∗(s) = maxπ Vπ(s). Although state-values are enough for

defining optimality, it is useful to define the action-value function

Qπ(s, a) = Eπ[Rt|s = st, a = at] (1.6)

Qπ(s, a) is the expected return for selecting action a in state s and prosecuting with

policy π. Given a state s and an action a, the optimal action-value function Q∗(s, a) =

maxπ Qπ(s, a) is the best possible action value that any policy may achieve.

There are many methods for value function approximations, among them: Monte Carlo

methods, Temporal Difference methods and N-step methods.

1.3.1.1 Monte Carlo methods

Monte Carlo methods (MC) learn directly from the experience gathered by interact-

ing with the environment. An MC method randomly samples entire episodes of experi-

ence and updates accordingly the value estimates. MC methods have high variance (due

to lots of random decisions within an episode) but are unbiased.

But how do we ensure that we explore all states if we do not know the full environment?

The solution to this exploration problem is to use ε-greedy policies with ε > 0, where ε

is the probability of acting randomly.

Problems with MC include:

1. MC procedure may spend too much time evaluating a suboptimal policy.

2. It is sample inefficient.

3. When the returns along the trajectories have high variance, convergence is slow.

4. It works in episodic problems only.

6

1.3 Reinforcement Learning

5. It works in small, finite MDPs only.

1.3.1.2 Temporal Difference and N-step methods

Temporal difference (TD) methods are a combination of Monte Carlo and Dynamic

Programming ideas. These methods sample from the environment, like Monte Carlo

methods, and perform updates based on current estimates, like dynamic programming

methods.

While Monte Carlo methods only update their estimates at the end of an episode, TD

methods update their estimates to match later, more accurate, predictions about the fu-

ture, before the final cumulative reward is known. The general update rule for TD

learning is:

Q[st, at]← (1 − α) · Q[st, at] + α · td_target (1.7)

td_target − Q[st, at] is called TD error, and the value-action table Q is initialized arbi-

trarily.

SARSA [Sut96] is an example of on-policy TD control, with TD target: Rt + γ ∗

Q[st+1, at+1], while Q-Learning [WD92] is an off-policy TD control, with TD target:

Rt + γ ∗max(Q[st+1]).

Q-Learning has a positive bias because it uses the maximum of estimated Q values

to estimate the best action value, all from the same experience. Double Q-Learning

[VHGS16] gets around this by splitting the experience and using different Q functions

for maximization and estimation.

N-Step methods unify MC and TD approaches, making updates based on n-steps instead

of a single step (TD-0) or a full episode (MC).

1.3.2 Policy function approximation

In policy-based RL, instead of parametrizing the value function and doing ε-greedy

policy improvements to the value function parameters, we parametrize the policy πθ(a|s)

and update the parameters θ descending gradient into a direction that improves π, be-

cause sometimes the policy is easier to approximate than the value function.

With respect to value-based RL, the advantages of policy-based RL are:

7

1. Background Information

• Better convergence properties.

• Effective in high-dimensional or continuous action spaces.

• Can learn stochastic policies.

While the disadvantages are:

• Typically converge to a local than global optimum.

• Evaluating a policy is typically inefficient and high variance.

Similarly to value-based approaches, also policy-based approaches can be on-policy or

off-policy. The difference between on-policy and off-policy policy based algorithms is

in the policy gradient formula.

1.3.2.1 On-policy gradient

Policy gradient methods maximize the expected total reward by repeatedly estimat-

ing the gradient:

∇θJON(θ) := ∇θ E
 ∞∑

t=0

rt

 (1.8)

There are several different related expressions for the policy gradient, which have the

form:

∇θJON(θ) = E
 ∞∑

t=0

Ψt · ∇θ log πθ(at|st)

 (1.9)

where Ψt may be one of the following:

• The total reward of the trajectory:
∑∞

t=0 rt.

• The state-action value function: Qπ(st, at).

• The TD residual: rt + Vπ(st+1) − Vπ(st).

8

1.3 Reinforcement Learning

1.3.2.2 Off-policy Gradient

An off-policy policy-based method uses past experience to update its parameters.

The past experience is sampled by a known and predefined strategy β(a|s). This expe-

rience replay technique may improve the algorithms performances giving better sample

efficiency (that in many cases also brings better exploration).

The off-policy policy gradient is slightly different from the on-policy one, in fact eq.(1.9)

has to be rewritten in order to consider also the importance of the sampled experience.

Thus we have:

∇θJOFF(θ) = Eβ

[
πθ(a|s)
β(a|s)

· Ψ · ∇θ log πθ(a|s)
]

(1.10)

where πθ(a|s)
β(a|s) is the importance weight.

1.3.3 Actor-Critic

As shown in Fig.1.4, Actor-Critic methods are in the middle between policy-based

and N-step value-based RL.

In order to properly perform the bootstrapping operation required by N-step, a Critic

that approximates the value function is used while an Actor decides the actions accord-

ingly. Thus, in Actor-Critic we have two function approximators: one for the policy (the

Actor), one for the value function (the Critic). This is basically N-step, but for Policy

Gradients.

More in details, the idea behind Actor-Critic is that it is possible to reduce the variance

of the policy (eq.1.9) while keeping it unbiased by subtracting a learned state-value

function V(s) known as baseline. R − V(s) is called the advantage function A(s). The

advantage is used to measure how much better than “average” it is to take an action

given a state. Thus, the Actor updates its parameters θ1 in the direction of:

E[A(s) · ∇θ1 log πθ1(a|s)] (1.11)

While the Critic updates its parameters θ2 in the direction of:

c1∇θ2Ω
(
R − Vθ2(s)

)
(1.12)

Where Ω usually is the L2 loss [Tena], and c1 is a regularization constant used to keep

the Critic learning rate lower than the Actor. Commonly c1 < 1 (eg: c1 = 1
2).

9

Chapter 2

State-of-the-art for Actor-Critic

The Actor-Critic family can count many different algorithms including:

• A3C: asynchronous actor-critic [MBM+16a]

• A2C: synchronous actor-critic [SWD+17]

• DPG: deterministic policy gradient [SLH+14]

• DDPG: deep deterministic policy gradient [LHP+15]

• D4PG: distributed distributional DDPG [BMHB+18]

• MADDPG: multi-agent DDPG [LWT+17]

• TD3: Twin Delayed Deep Deterministic [FvHM18]

• TRPO: trust region policy optimization [SLA+15]

• PPO: proximal policy optimization [SWD+17]

• GAE: generalized advantage estimator [SML+15]

• ACER: actor-critic with experience replay [WBH+16]

• ACTKR: actor-critic using Kronecker-factored trust region [WMG+17]

10

2.1 A3C

• Soft Actor-Critic: incorporates the entropy measure of the policy into the reward

to encourage exploration [HZAL18]

• IMPALA: Importance Weighted Actor-Learner Architecture for scalable Distributed

Deep-RL and incredibly effective on multi-task reinforcement learning [ESM+18]

In the next sections we are going to summarize those actor-critic algorithms used in our

experiments, but for more details about the other algorithms and their code implemen-

tations please refer to the cited papers or to [Wen18].

2.1 A3C

The Asynchronous Advantage Actor-Critic (A3C) algorithm [MBM+16a] is an on-

policy technique based on Actor-Critic. A3C, instead of using an experience replay

buffer, uses multiple agents on different threads to explore the state spaces and makes

decorrelated updates to the Actor and the Critic. Hence, A3C is designed to work well

for parallel training as shown in Fig.2.1.

Figure 2.1: State-of-the-art for Actor-Critic: A3C overview

It is important to mention that A3C uses a different version of the policy gradient

formula in order to better tackle the exploration problem (see Chapter 3 for more details

11

2. State-of-the-art for Actor-Critic

on the exploration problem). Thus, in A3C, the Actor objective function is changed to:

JON(θ1) = E
[
A(s) · log πθ1(a|s) − βS (πθ1 |s)

]
(2.1)

Where S (πθ|s) is the entropy of policy πθ given state s, and β is an entropy regularization

constant.

A slightly different variation of A3C is A2C. In A3C each agent talks to the global pa-

rameters independently, so it is possible sometimes the parallel agents would be playing

with different policies and therefore the aggregated update would not be optimal. The

aim of A2C is to resolve this inconsistency. As shown in Fig.2.2, A2C uses a coordina-

tor that waits for all the parallel actors to finish before updating the global parameters,

for this reason A2C is said to be the synchronous version of A3C.

A2C has been shown to be able to utilize GPUs more efficiently and work better with

large batch sizes while achieving same or better performance than A3C. [SA18]

Figure 2.2: State-of-the-art for Actor-Critic: A3C vs A2C

2.2 GAE

The Generalized Advantage Estimation (GAE) is a method for computing the actor-

critic advantage, reducing the variance but introducing some extra bias.

GAE is designed to achieve constant policy improvement despite the non-stationary

incoming data. GAE uses value functions to reduce the variance of policy gradient

estimates at the cost of some errors. GAE allows better control in the presence of spaces

12

2.3 PPO

of high dimensional actions. [SML+15]

In GAE, the advantage estimation is computed using a the k-step discounted sum of TD

residuals δV
t = rt + γV(st+1) − V(st):

ÂGAE(λ,γ)
t =

inf∑
l=0

(λγ)lδV
t+l (2.2)

This generalized estimator of the advantage function allows to tune bias and variance

using the parameter 0 ≤ λ ≤ 1 instead of parameter γ. For λ = 0 the problem re-

duces to the (unbiased) TD(0) function, while increasing λ towards 1 the variance of the

estimator reduces increasing the bias.

2.3 PPO

In order to improve training stability, we should avoid parameter updates that change

the policy too much at one step. Trust region policy optimization (TRPO) [SLA+15]

carries out this idea by enforcing a Kullback–Leibler divergence [KL51] constraint on

the size of policy update at each iteration. While, Proximal Policy Optimization (PPO)

[SWD+17] is a simpler variation of TRPO that prevents too big changes to the policy

parameters by clipping them in a predefined range. PPO is much simpler to implement

than TRPO, more general, and according to [SWD+17] it has empirically better sample

complexity.

In order to understand PPO, first of all lets denote the probability ratio between old and

new policies as:

r(θ1) =
πθ1(a|s)
πθ1

old(a|s)
(2.3)

Then, the new Actor’s objective function for PPO is:

E
[
A(s) · r(θ1) − βS (πθ1 |s)

]
(2.4)

Let r̂(θ1) = clip (r(θ1), 1 − ε, 1 + ε), then the Actor objective function of PPO is:

JPPO(θ1) = E
[
min (r(θ1) · A(s), r̂(θ1) · A(s)) − βS (πθ1 |s)

]
(2.5)

where ε is the clipping range hyper-parameter.

In PPO the Critic uses the same clipping technique used by the Actor, but instead of

13

2. State-of-the-art for Actor-Critic

keeping the minimum between the clipped and the non-clipped objective, it keeps the

maximum. Let V̂θ2(s) = Vθ2
old

(s) + clip
(
Vθ2(s) − Vθ2

old
(s),−ε, ε

)
, the objective function

of the Critic is:

JPVO(θ2) = c1 max
(
Ω

(
R − Vθ2(s)

)
,Ω

(
R − V̂θ2(s)

))
(2.6)

with c1 = 0.5.

14

Chapter 3

Interesting methods to speed up
Reinforcement Learning

Analysing the algorithms mentioned in Chapter 2 we can list a few building blocks

or principles that seem to be common among them:

• Try to reduce the variance and keep the bias unchanged.

• Use Experience Replay (training data sampled from a replay memory buffer) for

improving Sample Efficiency.

• Critic network is either frozen periodically or updated slower than the actively

learned policy network.

• Entropy maximization of the policy helps encourage exploration.

• The critic and actor can share lower layer parameters of the network.

• Put constraint on the divergence between policy updates.

Some of the main bottlenecks, for RL, encountered in literature are:

1. Temporal resolution: expanding the unit of learning from the smallest possible

step in the task.

2. Division-and-conquest: finding smaller sub-tasks that are easier to solve.

15

3. Interesting methods to speed up Reinforcement Learning

3. Exploration: exploring the whole state space.

4. Sample efficiency: use efficiently the already explored state space in order to

reduce the need of re-exploring it again.

5. Structural generalization: find the most general solution.

All these bottlenecks are obviously related. For instance, altering the temporal resolu-

tion can have a dramatic effect on exploration. [DH93]

But how can we tackle the aforementioned problems? Some ideas from literature are:

• “Temporal resolution” and “division-and-conquest” may be tackled with hierar-

chical architectures (Section 3.4).

• “Exploration” may be improved using intrinsic rewards (Section 3.2)

• “Sample efficiency” may be obtained using experience replay (Section 3.1)

• “Structural generalization” may be probably tackled with unsupervised auxiliary

tasks (Section 3.3) or more generally multi-tasking [ESM+18]

3.1 Experience Replay

Experience Replay [LM92] is actually a valuable and common tool for RL that has

gained popularity thanks to Deep Q-learning [MKS+15].

The benefits coming from experience replay are:

• More efficient use of previous experience.

• Less sample correlation giving better convergence behaviour when training a

function approximator.

Furthermore to improve learning performances it possible to prioritize experience, in-

stead of sampling it uniformly, in order to replay important (eg: with more informative

content) experience more frequently [SQAS15].

16

3.2 Intrinsic Rewards for Exploration

3.2 Intrinsic Rewards for Exploration

Improving exploration may be a complex task and can be achieved in several ways.

Some of them requires changing the gradient formula in order to maximize policy en-

tropy, but usually entropy regularization is not enough. Another interesting approach

consists in giving intrinsic rewards in order to motivate exploration/curiosity. Intrinsic

rewards are rewards that do not involve receiving feedback from the environment (the

outside), in fact they are a feedback from the agent itself (the inside) and for this reason

they completely differs from usual rewards in RL (the extrinsic rewards from outside).

Motivation and curiosity were used both to explain the need to explore the environment

and discover new goals, but also as a way to learn new skills that may be useful in the

future. Most formulations of intrinsic reward for exploration can be grouped into two

broad classes [PAED17]:

• Count-based: encourage the agent to move in unseen states.

• Curiosity driven: encourage the agent to perform actions that reduce the error/uncer-

tainty in its ability to predict the consequence of its own actions.

3.2.0.1 Count-based exploration

A typical count-based exploration reward function counts the occurrences of every

state visited by the agent, and gives a reward proportional to the number of occurrences

Γ(s) of the current state of the agent. According to the classic count-based exploration

theory, a typical count-based exploration reward function would be in the form:

R(s) =
θ
√

Γ(s)
(3.1)

where θ is called bonus coefficient.

A simple generalization presented in [THF+17] can reach near state-of-the-art perfor-

mance on various high-dimensional and/or continuous deep RL benchmarks, simply

mapping states to locality-sensitive hash (LSH) codes or domain-dependent learned

hash codes. A good hash function for count-based exploration should:

1. Have appropriate granularity.

17

3. Interesting methods to speed up Reinforcement Learning

2. Encode information relevant for solving the MDP.

3.2.0.2 Curiosity driven exploration

In curiosity driven exploration, intrinsic rewards are a feedback on how hard it is for

the agent to predict the consequences of its own actions, or in other words to predict

the next state given the current state and the executed action. An interesting example

of curiosity driven exploration is described in [PAED17]. Differently from existing

literature, [PAED17] proposes to only predict those changes in the environment that

could possibly be due to the actions of the agent or affect the agent, and ignore the rest.

3.3 Unsupervised auxiliary tasks

Unsupervised Auxiliary Tasks (UAT) for improving RL have been probably explic-

itly introduced for the first time by [JMC+16a] and they consist in augmenting the stan-

dard deep reinforcement learning methods with additional tasks to perform during train-

ing. A very interesting architecture using UAT is [JCD+18], getting human-level per-

formance in first-person multi-player games with population-based deep reinforcement

learning.

The additional tasks described in [JMC+16a] are:

• Reward Prediction: the agent is trained to predict immediate rewards from a brief

historical context, in which rewarding and non-rewarding histories are presented

in equal proportions to better address the sparse reward scenarios.

• Pixel Control: designed to teach the agent to understand how actions affect changes

in the pixels on the screen. This task seems closely related to the ideas described

in Section 3.2.0.2.

But it is possible to define much more auxiliary tasks.

18

3.4 Hierarchical Deep Reinforcement Learning

3.4 Hierarchical Deep Reinforcement Learning

Reinforcement Learning algorithms are based on the MDP framework, and they

work well under the assumption that the Markov property is valid (read sec.1.1). But

not all problems of practical interest respect Markov’s property.

Hierarchical Reinforcement Learning (HRL) purpose is to overcome the RL limitation

given by Markov property, for example by segmenting the action sequences in order

to reduce non-markovian dependencies and look for appropriate configurations of long

and short-term dependencies. [SS00, Bot12]

HRL is related to the idea of hierarchical planning in artificial intelligence [DFJ+81,

Cor79]. In hierarchical planning, an abstract and generic plan (or solution) is proposed,

which is then recursively reduced to simpler plans before being executed. This idea is

also known in Computer Science as sub-problem decomposition.

Consider an example of an agent learning to go from “Venice” to “New York” using the

primitive actions [N, E, S ,W]. The agent is going to take a lot of time to converge, if at

all it converges. But decomposing the problem into a more simple one using an abstract

action set like:

• get enough money

• go to airport

• buy a ticket

• take a plane

the planning is going to become simpler. The abstract action set is different from the

set of primitive actions, because they are compounded and are an abstraction of long

sequences of primitive actions. This way of abstracting the action space should reduce

the time taken for an agent to plan.

The most prominent framework to hierarchical reinforcement learning is the options

framework [SPS99, SP02, BHP17]: a high level policy learns to choose between a fixed

set of lower level policies, executing the chosen policy for several time steps. The lower

policies a usually trained on simpler sub-tasks of the general problem. Alternative ap-

proaches include feudal reinforcement learning [DH93, VOS+17] where higher levels

19

3. Interesting methods to speed up Reinforcement Learning

reward lower levels, and modulated controllers [HWT+16] where higher levels provide

context information to lower levels.

A naive approach to build hierarchies would be to derive their structure using an a priori

knowledge of the domain. However, the problem with this approach is its lack of gener-

ality which impacts on the cost (because it is expensive to obtain an a priori knowledge

of the domain), and makes such hierarchies inflexible (because the characteristics of the

domain may change over time). [SS00] But in practice naive hierarchies may be very

effective and very performing, sometimes resulting in the fastest solution; in our last

conference paper [ACS18] we show an interesting example of Naive HRL based on a

simple variation of the options framework.

Instead, a more generic approach than the aforementioned one would be to let the algo-

rithm to autonomously learn an optimal hierarchy (of actions) from the problem itself,

using a priori knowledge only in the form of some generic structure (eg: a fixed number

of hierarchical levels). [SS00]

In Chapter 5 we show examples of Generic HRL based on the options framework and

applied to video-games, robotic controllers and sentiment analysis.

3.4.1 Options framework

Options (or abilities or macro-actions) [SPS99, SP02] formalize the idea of actions

occurring in extended time intervals, equipping agents with the ability to plan at different

levels of temporal abstraction.

Much of the existing work on options is focusing on finding useful sub-goals that can

be reached by the agent, and then learning policies to achieve them. [BHP17]

A recent work of Bacon et al. [BHP17] shows the possibility of learning options jointly

with a policy-over-options in an end-to-end fashion by extending the policy gradient

theorem to options. The architecture proposed in [BHP17] is shown in Fig.3.1 and it

uses an Actor-Critic framework with an Actor for each option, an Actor for the option

picker (or manager) and a single shared Critic network.

Usually, when options are learnt end-to-end, they tend to degenerate to one of two

trivial solutions:

20

3.4 Hierarchical Deep Reinforcement Learning

Figure 3.1: Hierarchical Deep RL: Option critic architecture

• only one active option that solves the whole task;

• a policy-over-options that changes options at every step

Consequently, regularization mechanisms [BHP17, VMO+16] are usually used to force

the solution to have more options of extended length, and this is believed to help gener-

alisation.

21

Chapter 4

Software framework used for
experiments

Reinforcement Learning (RL) is an area of machine learning which studies how an

agent should take actions in an environment (or problem) having the goal of maximizing

some notion of cumulative reward.

Part of this thesis work is to experiment reinforcement learning techniques for auto-

matic decision-making. In order to make these experiments we need to set up one or

more training environments representing some interesting underlying problem that we

can try to solve with our RL algorithms. For our experiments we want to tackle three

different problems: Rogue, Sentiment Analysis and Car Controller.

In literature there are a lot of different RL algorithms, each of them with its own

strengths and drawbacks, and in Chapter 2 we have seen some of them.

This thesis work is focused primarily on generic hierarchical architectures based on the

actor-critic paradigm, but we also want to make some experiments on Experience Re-

play (Section 3.1) and Intrinsic Rewards for Exploration (Section 3.2). Thus, we need a

software framework we may use for experimenting the algorithms of interest, in all the

required environments.

In Section 4.1 we describe the chosen environments, while in Section 4.2 we briefly

introduce the adopted software framework.

22

4.1 Environments

4.1 Environments

We can say there are two main classes of RL problems, those who have a discrete

action space and those who have a continuous action space. We are interested in both

of them.

The discrete action-space environments we have chosen are:

• Rogue, a video-game

• SENTIPOLC 2016, a dataset for sentiment analysis

while the continuous action-space environment is:

• Car Controller, a simulator for autonomous driving

4.1.1 Discrete action space

In discrete action space the agent policy is usually modelled with a categorical dis-

tribution, for example using a softmax function [Tenb].

4.1.1.1 Rogue

Rogue is a complex dungeon-crawling video-game of the eighties, the first of its

gender. The player (the “rogue”) is supposed to roam inside a dungeon structured over

many different levels, with the final aim to retrieve the amulet of Yendor, coming back to

the surface with it. If the player dies, the game restarts from scratch (permanent death);

moreover, all levels are randomly generated and different from each other.

During his quest, the player must perform many different activities: explore the dungeon

(partially visible), when he enters a new level; defend himself from enemies, using the

items scattered through the dungeon; avoid traps; prevent starvation, finding and eating

food inside the dungeon.

In its standard configuration, the dungeon consists of 26 floors and each floor consists

of up to 9 rooms of varying size and location, randomly connected through non-linear

corridors, and small mazes. To reach a new floor the rogue must find and go down

the stairs; the position of the stairs is different at each floor, likely located in a yet

unexplored room, and hence hidden from sight at the beginning of exploration.

23

4. Software framework used for experiments

Figure 4.1: Software framework: The two-dimensional ASCII-based graphical inter-

face of Rogue

4.1.1.2 SENTIPOLC 2016

The environment SENTIPOLC 2016 is a dataset made for sentiment analysis clas-

sification and used in the EVALITA 2016 competition. [BBC+16] This environment is

completely different from the previous one, mainly because it is not intuitive how to

model the sentiment polarity classification as a Markov Decision Process.

Anyway, Sentiment Analysis (SA) is the application of analytical techniques to extract

subjective information from documents written in natural language. Some of the main

tasks in Sentiment Analysis are:

• Polarity Classification: classification of the polarity (positivity, negativity, neu-

trality) of a text at document granularity.

• Subjectivity Classification

• Irony Detection

More details about these tasks may be found in [BBN+14].

SENTIPOLC 2016 is composed by approximatively 9000 Italian tweets from Twitter,

annotated with a tuple of boolean values representing subjectivity, irony and polarity

(positive and/or negative) of the document. The training set is made of about 7000

tweets, while the test set is composed by 2000 tweets.

24

4.1 Environments

4.1.2 Continuous action space

Learning in real-world domains often requires to deal with continuous state and

action spaces. [LHP+15] In continuous action space the policy is usually modelled with

a normal distribution.

Continuous action space problems are usually addressed using policy-based or actor-

critic algorithms, because finding the greedy policy in continuous spaces with value-

based algorithms requires an optimization of the action at at each time-step t, and this

optimization on continuous spaces may become too expensive from a computational

point of view. [LHP+15]

4.1.2.1 Car Controller

Car Controller is a new environment we made for training Deep RL networks to

autonomously drive a car on a road with obstacles.

We decided to represent roads using the same data structure adopted by OpenDrive

format [e.a]. OpenDRIVE is an open file format for the logical description of road net-

works. It was developed and is being maintained by a team of simulation professionals

with large support from the simulation industry.

In OpenDrive format and in this environment, roads are efficiently represented using

cubic splines [Wol]. A cubic spline is a third-order polynomial Y(x) = a+bx+cx2 +dx3

with x ∈ [0, 1]. Cubic splines are used to generate control points. If we want to generate

N consecutive and different control points, than we can simply sample N different and

consecutive xn for each integer 0 ≤ n < N.

More in detail, every road is composed by one or more spline sets (pieces of road). Ev-

ery spline set is made of exactly two cubic spline functions: one for generating the x

coordinates of the control points and the other one for generating the y coordinates.

One of the main advantages of representing roads with cubic splines is that, in this way,

it is very simple to generate random paths. In fact, for a more robust training we need

to train the agent on random roads, and representing roads with cubic splines make us

super easy to generate random paths, because we just need to stochastically generate the

8 parameters of the spline sets with very few constraints, instead of generating directly

the n control points.

25

4. Software framework used for experiments

The Car Controller environment is a simplistic model at its first stage of development.

For now and for this reason we decided to represent obstacles with the following limi-

tations:

• Obstacles cannot move.

• Obstacles are circles.

• Obstacles are spawned only in the middle of the road.

• Only a few number of different obstacles is simultaneously spawned.

We also represented the car with the following limitations:

• The car is a point.

• The car has an heading vector and can control only its acceleration and steering

angle during every step of the simulation.

• The car cannot move in backward direction (it has to perform a U-turn instead).

• The car is able to see (roads, obstacles) only up to 1 meter in forward direction.

The Car Controller environment randomly generates:

• Sequences of cubic splines for representing roads.

• A fixed random number of immobile obstacles on the road represented by circles

with random radius.

A simulation step is taken in average every µ = 0.1 seconds, where µ is the mean of an

exponential distribution. At every step, a random noise is added to the chosen car action

in order to realistically simulate actuation errors.

The car goal is to follow the road, avoid obstacles, and not exceed a given maximum

speed limit.

In Fig.4.2 we show an example of car overtaking random obstacles on a random road in

the Car Controller environment.

26

4.2 Framework

Figure 4.2: Software framework: Example of car overtaking random obstacles on a

random road in the Car Controller environment

4.2 Framework

As we have seen in Chapter 2, Actor-Critic is a big family of RL algorithms. In this

work we want to focus primarily on:

• Actor-Critic paradigm

• Hierarchical networks

• Experience Replay

• Exploration intrinsic rewards

In order to do so, we need a framework for experimenting RL algorithms, with ease, on

different types of problem.

In May 2017, OpenAI has published an interesting repository of RL baselines [DHK+17],

and it is still maintaining it with continuous improvements and updates. The aforemen-

tioned repository is probably the best choice for testing the performances of already

27

4. Software framework used for experiments

existing RL algorithms requiring very minimal changes, but it is hard to read and mod-

ify (at least for the author).

Thus we decided to use as code-base for our experiments the open-source A3C algo-

rithm, built on Tensorflow 1.10.1 [ABC+16], that comes with our last conference pa-

per [ACS18], mainly because we already had experience with it and we know the de-

tails of its inner mechanisms. But even the chosen code-base is not generic and abstract

enough for our goals, for example that code-base is made for Rogue only, thus we had

to make some changes to it:

1. We created a unique configuration file in the Framework root directory, for con-

figuring and combining with ease (in a single point) all the Framework features,

algorithms, methods, environments, etc.. (included those that are going to be

mentioned in the following points of this enumeration)

2. Added support for all the Atari games available in the OpenAI Gym repository

[BCP+16].

3. Created a new environment for Sentiment Analysis (Section 4.1.1.2).

4. Created a new environment for Car Controller (Section 4.1.2.1).

5. Added support for A2C (Section 2.1).

6. Added Experience Replay and Prioritized Experience Replay (Section 4.2.1).

7. Added Count-Based Exploration (Section 4.2.2).

8. Added PPO and PVO (Section 2.3).

9. In many OpenAI baselines the vanilla policy and value gradient (see eq.1.9) has

been slightly modified in order to perform a reduce mean instead of a reduce sum,

because this way it is possible to reduce numerical errors when training with huge

batches. Thus, it has been added support for both mean-based and sum-based

losses.

10. Added GAE (Section 2.2).

28

4.2 Framework

11. Added support for all the gradient optimizers supported by Tensorflow 1.10.1:

Adam, Adagrad, RMSProp, ProximalAdagrad, etc..

12. Added support for global gradient norm clipping and learning rate decay using

some of the decay functions supported by Tensorflow 1.10.1: exponential decay,

inverse time decay, natural exp decay.

13. Added different generic hierarchical structures (Section 5.2.5 and 5.1.10) based

on the Options Framework (Section 3.4.1) for partitioning the state space using:

• K-Means clustering [HW79]

• Reinforcement Learning

14. Made possible to create and use new neural network architectures, simply extend-

ing the base one. The base neural network, by default, allows to share network

layers between the elements of the hierarchy: parent, siblings.

15. In order to simplify experiments analysis, it is required a mechanism for an in-

tuitive graphic visualization. We implemented an automatic system for generat-

ing GIFs of all episodes observations, and an automatic plotting system (Section

4.2.3) for showing statistics of training and testing. The plotting system can also

be used to easily compare different experiments (every experiment is colored dif-

ferently in the plot).

16. Added support for continuous control (Section 5.3.3).

17. Added support for multi-action control (this the same policy network can learn to

perform simultaneously more than one action).

The source-code of the aforementioned software framework is available at [Sova].

4.2.1 Experience Replay

Experience Replay (ER) is a technique described in 3.1 used to turn an on-policy al-

gorithm to off-policy, improving sample efficiency. We have seen in Section 1.3.2.2 that

29

4. Software framework used for experiments

the off-policy gradient works using importance weights. In our naive implementation

of ER we are going to consider only importance weights of 1, thus practically using the

on-policy gradient instead of the off-policy one.

ER works using a circular buffer called Experience Buffer. This buffer has a fixed size

and it is fed with batches until it is completely full. When the buffer is full, the old

batches are replaced using a FIFO (First In First Out) policy.

In this particular implementation of ER it is possible to group batches using a key spec-

ified during batch insertion into Experience Buffer. During sampling operation, a group

g is chosen from the groups set G with probability 1
|G| and a batch b ∈ g is sampled with

probability 1
|g| . In all our experiments we usually separate batches into two groups using

the following disequation as guard R > 0 where R is the batch cumulative non-intrinsic

reward.

Furthermore, it has been added an ad-hoc mechanism for filtering the batches to add

in the experience buffer in order to sample only those considered the most important.

When this mechanism is activated, only those batches with R , 0 are added to the Ex-

perience Buffer.

The replay frequency is defined by a Poisson distribution with mean µ (the replay ratio

constant). At every step, k replay batches are randomly sampled from the experience

buffer, where k is sampled from the aforementioned Poisson distribution.

In our software framework we also added support for Prioritized ER. The idea behind

Prioritized ER is that using a prioritized buffer it is possible to specify a sampling pri-

ority. In this particular implementation of Prioritized ER, to each buffer batch is added

a numerical key (the priority) and the whole buffer is kept ordered with respect to that

key. During sampling operation, we sample a random number z lower than the sum of

all the priorities, then the first batch having prefix sum greater or equal than z is taken.

4.2.2 Count-Based Exploration

In this particular implementation of Count-Based Exploration (CBE), the states are

mapped to hash codes h using Locality-Sensitive Hashes (LSH) which allows to count

their occurrences with a hash table T . The LSH algorithm is implemented using a Sparse

Random Projection (SRP) [LHC06,Ach01] of k components, where k is exactly the size

30

4.2 Framework

of the resulting hash. An efficient implementation of SRP is available in Scikit-Learn

library [PVG+11].

The SRP is trained every n steps using the states seen during these steps. This means

that the projection may change every n steps producing different hash representations

for the same state s (eg: at step n and at step 2n).

Assuming that within an episode the projection cannot be trained, the hash table T is

reset every episode.

Let r = 2
√

T [h]
− 1 be the adopted count function, then the final CBE reward is computed

according to the following equations:

• if r > 0, then CBE reward is r · p

• if r <= 0, then CBE reward is r · n

Where p and n are respectively the positive and negative exploration coefficients.

4.2.3 Statistics for evaluation metrics

The plotting system, briefly introduced a while ago in Section 4.2, is generic enough

to plot any desired statistic just adding it in a statistics dictionary. There are some

statistics that may be common to all experiments, and in this section we are going to

describe them.

In all the experiments of this thesis we are going to use some variants of A3C trained

on t threads (usually 4 or 8), thus the common statistics may be:

• “avg_reward”: average extrinsic cumulative reward

• “loss_actor_avg”: average actor loss

• “loss_critic_avg”: average critic loss

• “loss_actor_clipping_frequency_avg”: the average clipping frequency of the ac-

tor, when using PPO loss

• “loss_actor_entropy_contribution_avg”: the average entropy contribution to the

total loss

31

4. Software framework used for experiments

• “loss_actor_kl_divergence_avg”: the average Kullback-Leibler divergence of the

actor policy

All the aforementioned averages are the average of the average of n episodes statistics

of t threads. For example, let s j
i be the episode statistic of the last i-th episode of thread

j, then the final plotted average for s is:

∑t
j=0

∑n
i=0 s j

i
n

t
(4.1)

In all the experiments we set n = 200.

In the case of hierarchical architectures if the architecture has more actors and critics,

then the related actor and critic statistics are computed separately for each actor and

critic. For example, if the hierarchy is composed by two A3C networks then we will

have “loss_actor0_avg”, “loss_actor1_avg”, etc..

32

Chapter 5

Experiments on Generic Hierarchical
Reinforcement Learning

As the name may suggest, Generic HRL is the application of generic hierarchies in

reinforcement learning. Differently from naive hierarchies, generic hierarchies do not

use a priori knowledge on the underlying problem and for this reason they are consid-

ered much more interesting and powerful, but more difficult to properly design.

In this chapter we are going to describe three different experiments, on three differ-

ent environments and neural networks, using Generic HRL techniques based on simple

variations of the Options Framework. Our goal is to investigate the benefits of HRL

over simple RL.

In all the experiments the hierarchical architecture is made by an A3C partitioner able

to partition the state space into n different sub-spaces for respectively n different A3C

workers.

Our first experiment (Section 5.1) is conducted on Sentiment Analysis using the SEN-

TIPOLC 2016 environment described in Section 4.1.1.2, and we show that in this envi-

ronment the benefits of HRL may be significant. The main challenge of this experiment

was to model the underlying problem as MDP, in order to use the RL framework.

Our second experiment (Section 5.2) is conducted on the Rogue environment introduced

in Section 4.1.1.1, and we show that in the chosen environmental settings the benefits of

HRL do not seem to be significant. The main challenges of this experiment were prob-

33

5. Experiments on Generic Hierarchical Reinforcement Learning

ably to choose a good state representation, to tackle the exploration problem mentioned

in Chapter 3, and to find a useful generic hierarchical architecture.

Our last experiment (Section 5.3) is conducted on the Car Controller environment de-

scribed in Section 4.1.2.1, and we show that in this particular environment there are no

evident benefits in using HRL. The biggest challenge of this second experiment was

probably to understand how to model a policy for continuous action-spaces using a nor-

mal distribution, and in order to do that we had to investigate different interpretations

(from math and information theory) on the nature of some components of the policy

gradient equation.

5.1 Experiment 1 - Sentiment Analysis

Sentiment analysis is the application of analytical techniques to extract subjective

information from documents written in natural language.

Given its complexity, historically sentiment analysis has been a difficult task to auto-

mate. In fact, the accuracy of a sentiment analysis system is, in principle, how well it

agrees with human judgements. However, according to research, human critics typically

only agree about 80% of the time. [KNP13]

Recently, the use of deep learning techniques has allowed the creation of state-of-

the-art classifiers for the sentiment polarity classification and other sentiment analysis

tasks [NRR+16, RFN17, BBC+16].

In this experiment we deal with the problem of sentiment analysis using an approach

that involves deep reinforcement learning. The idea is to model sentiment analysis in

the form of a Markov Decision Process through the representation of an emotional state

associated with the reading (even partial) of a document. Conceptually, the process

adopted is inspired by the natural way a person performs sentiment analysis.

Human-like learning seems intriguing and, in addition, reinforcement learning can eas-

ily process texts of arbitrary length in a word-by-word manner. The episode-based and

flexible structure of this method can handle highly complex sentences and thus appears

to be particularly well-suited for sentiment analysis. [PFN16] Thanks to reinforcement

learning it has been possible to teach the agent to properly stochastically understand

34

5.1 Experiment 1 - Sentiment Analysis

how sequences of words in a document affect the perception of sentiment expressed by

the document itself, thus allowing an analysis much finer and more detailed than the

applications discussed in [BBC+16, NRR+16].

The source code used for this experiment is publicly available at [Sovb].

5.1.1 Related Work

As far as the author knows, Reinforcement Learning (RL) approach is only rarely

applied to the domain of computational linguistic.

The most related work seems to be [PFN16]. In this research about sentiment analysis,

the goal is to detect negation scopes in financial news in order to enhance the measured

accurateness of sentiment. To do so, they used an off-policy RL algorithm as Q-learning

to invert (or not) the precomputed sentiment polarity of a word.

Some of the state-of-the-art applications for sentiment analysis are resumed in [BBC+16,

NRR+16]. What is in common between them is:

• The adoption of deep supervised learning techniques.

• The geometrical representation of words/sentences through Word Embeddings,

mostly derived by using the Word2Vec algorithm [MSC+13] or similar methods.

• The use of additional word features derived from Distributional Polarity Lexicons.

5.1.2 Sentiment Analysis as Markov Decision Process

In order to make use of Reinforcement Learning, it is required to model the Senti-

ment Analysis problem in the form of a Markov Decision Process (MDP).

The idea is to model sentiment analysis in the form of a MDP through the representation

of an emotional state associated with the reading (even partial) of a document. Concep-

tually, the process adopted is inspired by the natural way a person performs sentiment

analysis: the reader reads the document (eg.: from left to right) and for each observed

and contextualized token it changes (or not) its emotional state according to the most

probable contribution of that token to the overall perceived sentiment for the document.

We call sentidoc a vector representing the agent emotional state related to the ordered

35

5. Experiments on Generic Hierarchical Reinforcement Learning

sequence of tokens composing a document. The 1st token of the sequence is always

the 1st token of the document, the 2nd token of the sequence is the 2nd token of the

document, and so on.

Let kt be the token currently reading at time step t, and let σt be the estimated partial

sentidoc up to k, we have that:

• A state at t is defined by kt and by σt. This way, the sentidoc is part of the

environment.

• An action at t is defined as a decision to change (or not) σt. For this reason, the

environment is affected by agent actions as required by RL.

• A reward at t is given by a function of the similarity between σt and the overall

sentiment annotation (eg: if the sentidoc is different from the one noted, then the

agent receives a negative reward)

In this setting, during the learning phase, the overall perceived sentiment for the docu-

ments in the training set should be known a priori. Thus, an annotated dataset is required

for training and testing, for this reason we are going to use the dataset of SENTIPOLC

2016 by Evalita [BBC+16] described in Section 4.1.1.2.

Anyway, let’s go back for a moment to the contextualization problem. The dependency

between a token kt and all the other tokens kt′ with t′ < t is clearly a non-markovian

temporal dependency. For this reason we decided to approach the Sentiment Analysis

problem with Hierarchical Reinforcement Learning instead of simple Reinforcement

Learning.

Until now we have defined the state space of the Sentiment Analysis MDP, but an MDP

needs also a reward function. The reward function indicates how well the learner is be-

having while not explicitly detailing how to improve its behaviour. Thus, we may model

the reward function as a function of the similarity between σt and the overall sentiment

annotation, for example we may use the F1 score [Wik18c] or the Matthews Correlation

Coefficient (MCC) [Wik18d] or the cosine similarity [Wik18a], etc..

36

5.1 Experiment 1 - Sentiment Analysis

5.1.3 Architecture

Sentiment analysis goal is to extract subjective information from documents written

in natural language, this implies that the reinforcement learner (the actor) has to learn

a stochastic policy that might find in agreement the most of the human critics. It is

interesting to notice the analogy between the aforementioned goal description and the

Actor-Critic framework.

In this section we describe a novel hierarchical architecture made by an A3C partitioner

able to partition the state space into n different sub-spaces for respectively n different

A3C multi-task learners. All the n A3C multi-task learners contributes to build a com-

mon cumulative reward without sharing any other information, and for this reason they

are said to be highly independent. Each agent employs the same architecture, state rep-

resentation and reward function.

This architecture is shown to be able to give better results, in Polarity Classification and

Subjectivity Detection for the Italian language on the SENTIPOLC 2016 dataset, than

those described in [BBC+16].

In the following sections we are going to discuss: the document preprocessing (Sec. 5.1.4),

the state representation (Sec. 5.1.5), multi-task learning (Sec. 5.1.6), the neural network

(Sec. 5.1.7), how we shaped the reward function (Sec. 5.1.8), how we tackled the over-

fitting problem deriving from the small size of the dataset (Sec. 5.1.9), the hierarchical

architecture (Sec. 5.1.10) and the adopted hyper-parameters (Sec. 5.1.11).

5.1.4 Document Preprocessing

The adopted deep learning method requires to model the documents through a geo-

metric representation (eg: vectors).

The document preprocessing can be decomposed in the following steps:

1. Tokenization.

2. Part-of-Speech Tagging (and lemmatization).

3. Features extraction from Distributional Polarity Lexicons.

4. Word embedding.

37

5. Experiments on Generic Hierarchical Reinforcement Learning

At step 1 the document is decomposed into a list of semantic units called tokens (emojis,

verbs, adjectives, etc..). At step 2, to each token is associated the corresponding part-

of-speech tag (postag) and lemma. At step 3, both the lemmas and the postags are used

with a bunch of lexicons to retrieve:

• The lemma polarity: the frequency of occurrences of the lemma inside posi-

tive/negative sentences.

• Whether the lemma is a negator: a token that negates the meaning of other tokens.

• Whether the lemma is a intensifier: a token that intensifies the meaning of other

tokens.

• Whether the lemma is a stop word: a very commonly used token such as “a”,

“and”, “in”, etc..

Finally, at step 4 the lemmas are mapped to vectors using a technique called “word

embedding” [GRMJ15]. Word embedding is a type of mapping that allows words with

similar meaning to have similar representation. The basic idea behind word embedding

(and distributional semantics) can be summed up in the so-called distributional hypoth-

esis [Sah08]: linguistic items with similar distributions have similar meanings; words

that are used and occur in the same contexts tend to purport similar meanings.

At step 1, a combination of the Tweet Tokenizer and the Moses Tokenizer has been used.

The Tweet Tokenizer [NLT] is not designed for Italian thus it is used only to identify

emojis, hashtags, URLs and e-mails, while the Italian Moses Tokenizer [Mos] is used

to identify the remaining tokens.

At step 2 the Italian TreeTagger [Sch95] has been used as PoS-tagger and lemmatizer.

Step 3 is probably the most complicated. This step can be decomposed into 4 different

sub-steps:

1. All the emojis are converted into their unicode representation. The unicode rep-

resentation is used to search the distributional polarity inside [NSSM15]. If the

aforementioned search fails, then the polarity of the English emoji shortcode to-

kens (retrieved from SentiWordNet [BES10]) is used.

38

5.1 Experiment 1 - Sentiment Analysis

2. The NLTK library [BL04] is used to know whether the lemma is a stop word.

3. The lemmas of the tokens that are not emojis, hashtags, URLs, e-mails and stop

words are automatically translated into English using the Google Translator. The

resulting translation is used to search the distributional polarity in SentiWordNet

[BES10].

4. The OpeNER Italian lexicon [Izq] is used to know whether the lemma is a negator

or an intensifier.

At step 4, fastText [GBG+18] has been used as word embedder because it provides a

good-enough model pre-trained on the Italian Wikipedia and Common Crawl [Com].

This pre-trained model represents a word embedding with a vector of 300 real numbers.

Empirically, it has been observed that multiplying the vectors by a scale factor of 100

allows the network to better distinguish features, thus leading to better results.

5.1.5 State representation

In this setting a document is an episode and it is represented by its ordered list of

tokens plus a special token at the end of the list to represent the entire document. The

lemma embedding of the special token (the last one) is the average of the lemma em-

beddings of each other token in the document. Each token is represented using the

concatenation of its lemma embedding and the following features extracted during doc-

ument preprocessing:

• negativity: real number in [0, 1]

• positivity: real number in [0, 1]

• is negator: integer representation of a boolean, multiplied by 2

• is intensifier: integer representation of a boolean, multiplied by 4

• is emoji: integer representation of a boolean, multiplied by 8

• is last token: integer representation of a boolean, multiplied by 16

39

5. Experiments on Generic Hierarchical Reinforcement Learning

Thus, the overall size of a each token representation is 300 + 6 = 306.

In Sec. 5.1.2 we gave the definition of state. A state at step t is defined by the token

representation kt and by the sentidoc σt. We assume that stop words, e-mails and URIs

do not influence the overall sentiment of a document, thus only the remaining tokens

are taken under consideration.

The sentidoc is a vector of size p, where p is the number of different features composing

the emotional state. In other terms, p is the size of the vectorial representation of the

sentiment annotation of the document.

In Sec. 5.1.6 more details are given about the sentidoc representation.

5.1.6 Multi-Task Training

An annotation from the Evalita dataset for SENTIPOLC 2016 is a vector made of 6

boolean values representing:

• subjectivity

• irony

• overall positivity

• overall negativity

• literal positivity

• literal negativity

Each boolean value can be associated to a different task of binary classification. Many

participants to the SENTIPOLC competition [BBC+16] have trained a separate binary

classifier for each task. But in our setting this approach seems to lead to poor results.

We used Multi-task Learning over all the 6 tasks represented by the boolean values of

a document annotation. Thus, the chosen representation for sentidoc is a vector of 6

boolean, one for each task.

Multi-task Learning is an approach to inductive transfer that improves generalization

by using the domain information contained in the training signals of related tasks as an

40

5.1 Experiment 1 - Sentiment Analysis

inductive bias. It does this by learning tasks in parallel while using a shared representa-

tion; what is learned for each task can help other tasks be learned better. [Car98].

5.1.7 The neural network

Figure 5.1: Experiment 1 - Sentiment Analysis: Neural networks architecture

The neural network architecture we used is shown in Fig. 5.1. This network consists

of a convolutional layer followed by a dense layer to process spatial dependencies and

a LSTM layer to process temporal dependencies, and finally, value and policy output

layers. The CNN has a RELU, a 1 × 3 kernel with unitary stride and 16 filters. The

CNN output is flattened and it is the input of a FC without activation function and 256

units followed by a Maxout layer [GWFM+13] with 128 units. We call this structure:

tower.

At step t, the tower input is the the token representation kt described in 5.1.5 and its

output is concatenated with the sentidoc σt. This concatenation is fed into an LSTM

composed of 128 units.

The output of the LSTM is then the input for the value and policy layers.

A network with the aforementioned structure implements an agent for each situation

described in 5.1.9. The loss is computed separately for each network, and corresponds

to the A3C loss computed in [JMC+16a].

The output size of each layer is shown between brackets in figure ??. More in detail,

each kt has height h = 1, width w = 306 and c = 1 channels. Because we are performing

multi-task learning on binary classes, the output size of the Actor is [p, 2], where p = 6.

41

5. Experiments on Generic Hierarchical Reinforcement Learning

A
nn

ot
at

io
n

Sentidoc

True

Positive

False

Negative
P′

False

Positive

True

Negative
N′

P N

Figure 5.2: Experiment 1: Example of confusion matrix; in predictive analytics, a table

of confusion (sometimes also called a confusion matrix), is a table with two rows and

two columns that reports the number of false positives, false negatives, true positives,

and true negatives.

5.1.8 Reward shaping

In Sec. 5.1.2 we gave the following guidelines on how to choose a good reward

function for this environment: a reward at step t should be given by a function of the

similarity between σt and the overall sentiment annotation.

Both the sentiment annotation and the sentidoc are vectors of booleans. Each boolean

represents a binary class for a particular task. The similarity between a sentidoc and an

annotation may be calculated using a confusion matrix for each task. An example of

confusion matrix is shown in Fig. 5.2.

In order to avoid sparse rewards (and all the related problems mentioned in the

previous chapters), we shaped the reward function not to give rewards only when a final

state is reached (when the episode ends), but to give rewards also in intermediate states.

We designed and tested many different reward functions. Experimentally we found that

the reward function that seems to give better results pushes the agent to prefer a false

positive to a false negative. A plausible reason why this approach works in practice

is that in most classes the amount of positives is significantly less than the amount of

42

5.1 Experiment 1 - Sentiment Analysis

negatives. In fact, by giving equal rewards for both true positives and true negatives, the

agent would learn to underestimate the positives because in the dataset they are much

less frequent than the negatives. For more details on the distribution of positives in the

various classes of SENTIPOLC 2016, please refer to [BBN+14].

Anyway, until now the best reward function found for the neural network described

section 5.1.7 is:

•
∑p

1

(
0.05 · tpp + −0.05 · f np

)
if the state is not final

•
∑p

1

(
tpp + 0.1 · tnp − f pp − 0.1 · f np

)
if the state is final

Where tp, tn, f p, f n are integer representations of boolean values respectively repre-

senting the presence of a true positive, true negative, false positive, false negative.

5.1.9 Over-fitting mitigation

Over-fitting occurs when the agent learns to solve the problem only for the data

on which it has been trained and not also for the other possible data. If the training

dataset is not big enough, then over-fitting may be a big problem. In SENTIPOLC 2016

the training dataset is made only of approximatively 7000 tweets, thus to mitigate the

over-fitting problem we:

• Try to keep the neural network size relatively small.

• Perform multi-task training.

• Use a Maxout layer.

• Process the training set by epochs (partitioning it between the A3C threads).

• Randomly shuffle the training set at each epoch,

5.1.10 Hierarchical Structure

As mentioned in Section 5.1.2 and 5.1.3, for approaching Sentiment Analysis with

Reinforcement Learning we use a novel hierarchical architecture based on the Options

43

5. Experiments on Generic Hierarchical Reinforcement Learning

Framework (see Section 3.4.1) and made by an A3C partitioner for optimally partition-

ing the state space into n different sub-spaces for respectively n different A3C multi-task

situational agents.

Every situational agent has the same reward function described in Section 5.1.8, and

contributes to build a common cumulative reward without sharing any other informa-

tion with other agents except the value estimation used for bootstrapping.

The partitioner is an unsupervised classifier able to decide at run-time which A3C agent

should process a state, and its goal is to maximize the overall cumulative reward, dis-

tributing the states between the available agents thus specializing themselves to solve

sub-problems (said situations) of the original problem.

For each state, exactly two A3C networks can be simultaneously active: the partitioner

and the agent chosen by the partitioner. Each A3C network is trained only on the states

in which it has been activated.

Let vP be the value estimate of the Partitioner P and vA be the value estimate of the

Agent A chosen by the partitioner for a particular state s. When building the training

batch, the value that is more distant from 0 between vA and vP is used in order to produce

the same bootstrapped cumulative reward and advantage for both A and P. This way,

better convergence properties have been empirically observed.

This work on unsupervised partitioning of the state space may be seen as the generic

version for Sentiment Analysis of the A3C naive hierarchical architecture described

in [ACS18].

5.1.11 Hyper-parameters tuning

Let n be the number of partitions in which the state space is divided by the par-

titioner, then the number of A3C models composing the overall network is n + 1 (1

manager + n workers). The best value for the hyper-parameter n in this particular envi-

ronment has been empirically found to be 3.

At the very start of the training phase the situational agents workload is balanced. Dur-

ing the training, the workload changes very frequently and (usually) at the end of the

training one of the situational agents is used around 70% of the times, another one is

used 30%, and the last one is left unused, as shown in Fig. 5.3.

44

5.1 Experiment 1 - Sentiment Analysis

Figure 5.3: Experiment 1 - Sentiment Analysis: Hierarchical Structure workload

All the adopted hyper-parameters came from [Miy, ACS18], except the following:

• discount factor γ: 0.99

• batch size tmax: 5

• entropy β: 0.001 for the partitioner and 0.001 · i for the i-th situational agent

An important fact to highlight is that every situational agent has a different entropy

regularization constant β because it has been empirically observed that this significantly

improves the overall stability of the network. Also, in this experiment we are not going

to use Experience Replay, nor count-based exploration rewards.

We employed the same Tensorflow’s RMSprop optimizer available in [Miy, ACS18],

with parameters:

decay 0.99

momentum 0

epsilon 0.1

clip norm 40

The initial learning rate is approximatively η = 0.0007. The learning rate is annealed

over time according to the following equation:

α = φmη
Tmax − χm

Tmax
(5.1)

where Tmax = 3 · 106 is the maximum global step, χa is the number of times an A3C

model m is used, and φm is the regularization factor for m. The factor φ for the partitioner

45

5. Experiments on Generic Hierarchical Reinforcement Learning

is 1 and for the other models is 1
n . This way the partitioner learning rate is always

the greatest, and empirically this seems to lead to better performances for the overall

network.

5.1.12 Experiment Results and Evaluation

Figure 5.4: Experiment 1 - Sentiment Analysis: Training statistics; Part 1

The proposed architecture has been trained and tested on the Evalita SENTIPOLC

2016 dataset that is supplied with a evaluation script which score is based on F1 score.

Obviously, during the training phase the test set has never been used.

46

5.1 Experiment 1 - Sentiment Analysis

Figure 5.5: Experiment 1 - Sentiment Analysis: Training statistics; Part 2

The obtained results are constrained to the Evalita SENTIPOLC 2016 test dataset, thus

they do not depend on additional Twitter annotated data.

The statistics (average positive and negative F1 scores, MCC, and accuracy for all the

annotations described in Section 5.1.6) obtained during the training phase are shown in

Fig. 5.4 and Fig. 5.5 together with a comparison of the performances of the Generic

HRL approach and the RL approach. While the statistics obtained during the test phase

are shown in tables 5.1 and 5.2.

It is interesting to notice that the Generic HRL method produces lower average cumula-

tive rewards than the RL approach, but it gives significantly better results on all the F1

scores. The comparison results are not unexpected, in fact HRL is theoretically better

than RL in dealing with non-markovian dependencies.

On the test set, using Generic HRL, we obtained a combined F1 score for positivity

and negativity (called polarity) of 70.13.

47

5. Experiments on Generic Hierarchical Reinforcement Learning

Table 5.1: Experiment 1 - Sentiment Analysis: Test set results: Precision and recall,

scaled by 100

Pr.0 Re.0 Pr.1 Re.1

Subj. 70.38 66.33 82.60 85.13

Pos. 87.74 92.48 52.85 39.49

Neg. 81.08 74.23 63.73 72.34

Table 5.2: Experiment 1 - Sentiment Analysis: Test set results: F1 scores, scaled by

100

F10 F11 F1

Subj. 68.30 83.85 76.07

Pos. 90.04 45.20 67.62

Neg. 77.50 67.76 72.63

48

5.2 Experiment 2 - Rogue

Please, note that in [BBC+16] the best reported result for the polarity task is a F1 score

(trained with constrained runs) of 68.28 by SwissCheese, while for the subjectivity task

the best reported F1 score (trained with unconstrained runs) is 74.44 by UniTor.

5.2 Experiment 2 - Rogue

This second experiment is conducted on the Rogue environment introduced in Sec-

tion 4.1.1.1, and we show that in the chosen environmental settings the benefits of HRL

do not seem to be significant. The main challenges of this experiment were probably

to choose a good state representation, to tackle the exploration problem mentioned in

Chapter 3, and to find a useful generic hierarchical architecture.

This experiment differs significantly from the work in [ACS18], and the main differ-

ences shown in table 5.3 are on the following dimensions: hierarchical structure, game

version, reward function, neural network, learning algorithm.

Table 5.3: Experiment 2 - Rogue: Main differences between [ACS18] and Experiment

2

Experiment [ACS18] This experiment

Hierarchy hand-crafted/naive generic

Rogue version no monsters monsters and items

Reward function non-sparse sparse

Neural network size ≈ 3 · 106 ≈ 2 · 105

Learning algorithm A3C [MBM+16b] PPO [SWD+17]

We can say that the experiment described in [ACS18] was conducted in a somewhat

49

5. Experiments on Generic Hierarchical Reinforcement Learning

unsystematic way, preventing to clearly compare different approaches; it exploited pre-

defined situations; it had no monsters; it was based on a ad-hoc rewarding mechanism

made for having frequent rewards.

Thus, in this experiment we make use of generic HRL in a version of Rogue with mon-

sters, items and sparse rewards.

This new environmental setting is much more challenging than [ACS18], especially

because of:

• The presence of monsters adds a lot of complexity to the game.

• Sparse rewards makes the learning process harder.

Like in [ACS18], in this experiment we use a cropped view state representation and

organize the training process on the base of a single level, terminating the episode as

soon as the rogue takes the stairs.

5.2.1 State Representation

Let the game screen be a 24 × 80 matrix as shown in Fig. 4.1.

The adopted state is a 17× 17× 6 matrix corresponding to a cropped view of the screen

centred on the rogue (i.e. the rogue position is always on the centre of the matrix) having

width and height equal to 17, and 6 different channels for: doors, walls, monsters, items,

stairs, passages. The aforementioned matrix is filled with the following values:

1 for stairs

1 for walls

1 for doors

1 for passages

i for monsters where i is the index (starting from 1) of the monster in the mon-

sters set

i for items where i is the index (starting from 1) of the item in the items set

50

5.2 Experiment 2 - Rogue

0 everywhere else

where the number of different monsters is 26, while the number of different items is 11.

This state representation has the advantage of being sufficiently small to be fed to dense

layers (possibly after convolutions), and can be intended as a form of attention. More-

over, in principle it could be used for 2-dimensional mazes that are arbitrarily larger

than Rogue and it doesn’t require to represent the rogue into the map.

On the other hand, the disadvantage of this representation is that it requires some form

of memory, such as a recurrent unit or another more explicit and hand-made history of

past actions or states.

Furthermore, we have experimentally observed that the performance of the chosen RL

architecture drastically changes in worst when using a full view representation (with an

extra channel for representing the rogue with a 1) instead of the aforementioned cropped

view representation.

We suppose that the full view is more challenging because:

1. The neural network has to understand where the agent is on the map.

2. There is more information to process and interpret: in the screen view more parts

of the map are visible.

3. The state representation is not normalized and the different semantic elements in

the map are not clearly separated into different channels.

We leave the full view representation for future experiments.

5.2.2 Reward Function

In this experiment we use the simplest possible reward function: a positive reward

(+10) for descending the stairs and zero for everything else. This choice mainly follows

two considerations:

1. We want to assess the performance of agent when just awarded for the accom-

plishment of its task: finding and descending the stairs.

2. We do not want to introduce any bias in the agent behaviour.

51

5. Experiments on Generic Hierarchical Reinforcement Learning

For the task at hand this reward proves to be adequate, as can be seen from the results

discussed in section 5.2.6.

5.2.3 Action Space

In our experiment, the agent can take only one action per step taken from the fol-

lowing set of actions:

• go left

• go right

• go up

• go down

• descend stairs

This means that the agent cannot open the inventory, use scrolls, etc..

5.2.4 Neural Network

The neural network adopted in this experiment is shown in Fig. 5.6 and it consists of

two convolutional layers (CNNs) followed by a fully connected layer (to process spatial

dependencies) and a stateful LSTM layer (to process temporal dependencies) followed

by a Dropout and finally, value and policy output layers.

The CNNs have a RELU, a 3 × 3 kernel with unitary stride and respectively 16 and 32

filters. The CNNs output is flattened and it is the input for the fully connected layer

(FC) with RELU activation functions and 64 units. We call this structure: shared layers.

The shared layers input is the state representation described in Section 5.2.1 and its out-

put is concatenated with a numerical “one hot” representation of the action taken in the

previous state and the obtained reward. This concatenation is fed into an LSTM com-

posed of 64 units and followed by a dropout with keep probability 0.5 as in [BBU+18].

The idea of concatenating previous actions and rewards to the LSTM input comes

from [JMC+16b].

52

5.2 Experiment 2 - Rogue

Figure 5.6: Experiment 2 - Rogue: Neural network. The output size of each layer is

shown between brackets.

The output of the dropout is then the input for the value and policy layers. In Fig. 5.6,

we have that [h ×w × c] is the size of the state representation, e is the size of the concat

vector, and p is the size of the actions set.

5.2.5 Hierarchical Structure

Like in the experiment described in Chapter 5.1, the adopted hierarchical structure

is composed by one RL partitioner and n situational agents (or workers). But, differ-

ently from Chapter 5.1, parts of the neural network are shared among all the models

(partitioner and workers).

More in detail, all the models share the inital CNN and FC layers. The stateful LSTM

layer is shared only by workers, while the partitioner has its own separated stateful

LSTM layer. An example of the aforementioned architecture is shown in Fig. 5.7

Every worker has the same reward function described in Section 5.2.2, and con-

tributes to build a common cumulative reward.

The partitioner is an unsupervised classifier able to decide at run-time which worker

should process a set of p consecutive states, and its goal is to maximize the overall

cumulative reward, distributing the states between the available agents. p is called “par-

titioner granularity” an it can be tuned in order to speed up the algorithm. In fact, when

p = 1 the partitioner is called at every step and the granularity is the finest possible,

but when p > 1 the partitioner is called every p steps thus reducing the computational

complexity of the partitioning process.

Similarly to Chapter 5.1, the partitioner is trained with an higher learning rate than the

53

5. Experiments on Generic Hierarchical Reinforcement Learning

Figure 5.7: Experiment 2 - Rogue: Hierarchical structure

workers, and every worker has a different entropy regularization constant β because it

has been empirically observed that this is beneficial for the network stability. But dif-

ferently from Chapter 5.1 the partitioner and the workers do not share the bootstrapped

value estimation.

5.2.6 Experiment Results

In this section we show the experimental results of different tests with respect to a

baseline with the following hyper-parameters:

Gradient optimizer: Adama) Policy loss: PPOb)

Value loss: PVOc) Max. batch size: 8d)

Workers number: 4e) Entropy β: 0.001 for the partitioner

and 0.001 · i for the i-th situational

agent

f)

γ: 0.99g) Use GAE: Trueh)

GAE λ: 0.95i) Replay ratio: 1j)

54

5.2 Experiment 2 - Rogue

Prioritized replay: Falsek) Batch in buffer before starting re-
play: 1

l)

Save only batches with reward: Truem) α: 3.5e-4n)

α decay: Exponential Decayo) Clip range: 0.2p)

Clip range decay: Exponential De-

cay

q) Only non negative entropy: Truer)

Partitioner type: ReinforcementLearn-

ing

s) Partitioner optimizer: Proximal Ada-

grad

t)

Partitioner α: 7e-4u) Partitioner β: 0.001v)

Partitioner γ: 0.99w) Use count-based exploration reward:
True

x)

Positive exploration coefficient: 0.1y) Negative exploration coefficient: 0.001z)

In this experiment we organized the training process on the base of a single level, ter-

minating the episode as soon as the rogue takes the stairs. In the rest of this chapter,

unless stated otherwise, when we talk about the performance of an agent, we refer to

the average percentage of episodes terminated with the rogue finding and taking the

stairs within a maximum of 500 moves. This average is calculated using the formula

described in Section 4.2.3.

The baseline maximum performance is around 76%.

5.2.6.1 Test 1 - HRL benefits

Differently from the experiment in Chapter 5.1, in this experiment the beneficial ef-

fects of generic HRL are less evident and it is not clear whether there are positive effects

at all.

In our first test we compare three different hierarchical structures: the one described in

Section 5.2.5 (the baseline), a variation of the baseline with 3 partitions instead of 5 and

a new architecture based on the K-Means clustering algorithm [HW79].

55

5. Experiments on Generic Hierarchical Reinforcement Learning

In the K-Means based hierarchical architecture the clustering algorithm is trained on an

initial set of states, generated during training, with the goal of partitioning the whole

state space in n different clusters. Please note that K-Means partitions the state space

using the Euclidean distance of their vectorial representation, and this partition may not

be optimal, especially if the goal of the agent is to maximize the cumulative reward of

the agent.

The difference in performance between the aforementioned hierarchical structures and

an identical architecture without any hierarchy is shown in Fig. 5.8. We can see that the

baseline gives the best performance, but the margin is very small (around 5%) and the

situational agents workload is too much unbalanced. But an interesting fact to highlight

is that the workload of the K-Means based hierarchy is unbalanced too.

We have empirically found out that removing the dropout layer and bootstrapping the

manager with the worker’s value estimation (instead of the manager’s one) produces

more balanced workloads, but apparently without sensibly improving the overall per-

formance of the hierarchy. In this same test we have also tried to tune the partitioner

granularity hyper-parameter described in Section 5.2.5, in order to understand its role in

the algorithm. As shown in Fig. 5.9 granularities of 1 and 4 result in worst performances

(losing more than 20%) than granularity 8. We suspect that this is due to the fact that the

batch size is 8 too, thus granularities lower than 8 produces more “non-bootstrapped”

mini-batches. The results of another interesting test on HRL are shown in Fig. 5.10.

In this test we compare the hierarchical structure of the experiment in Chapter 5.1 (that

does not share layers among models) with the baseline of this experiment. Here we can

see that sharing layers in the hierarchical structure may be slightly beneficial for Rogue

(giving a performance bonus of +5 %).

5.2.6.2 Test 2 - Generic vs Naive HRL

In Chapter 3.4 we have briefly written about the difference between naive and generic

HRL. At the begin of Section 5.2, we made a comparison between our previous work

on Rogue [ACS18] and this new work, showing the differences between the two ap-

proaches. In this second test we want to compare the generic HRL architecture of the

baseline (Section 5.2.6) with a variation of the baseline using the naive HRL architec-

56

5.2 Experiment 2 - Rogue

Figure 5.8: Experiment 2 - Rogue: Training statistics of the test conducted to under-

stand the effects of HRL

ture adopted in [ACS18].

The aforementioned naive architecture is made of two separated situational agents, in-

voked respectively in two different situations: “stairs are visible on the screen”, “stairs

are not visible on the screen”. The situations are determined programmatically and are

not learned.

The comparison in Fig.5.11 shows that the two architectures achieve almost identical

performance in this environment settings, but the generic one explores more tiles while

the naive one takes less steps to descend the stairs.

5.2.6.3 Test 3 - Proximal Optimization

Proximal optimization is an interesting technique described in 2.3. In Fig.5.12 the

beneficial effects of Proximal Optimization are quite evident, both PPO and PVO signif-

57

5. Experiments on Generic Hierarchical Reinforcement Learning

Figure 5.9: Experiment 2 - Rogue: Training statistics of the test conducted to under-

stand the effects of the partitioner granularity hyper-parameter

icantly improve the overall algorithm performance respectively by more than 70% and

40%.

5.2.6.4 Test 4 - Count-based exploration and Experience Replay

Both count-based exploration and experience replay (Chapter 3) are interesting tech-

niques that may be used to improve a RL algorithm performance. An implementation

of the aforementioned methods has been already described in Section 4.2.2 and 4.2.1.

Count-based exploration is made for improving exploration, while experience replay is

made for improving sample efficiency. In Fig. 5.13 it is possible to see the beneficial

effects of these techniques when used on Rogue environment (with monsters). As you

can see, the effects of count-based exploration are much more significant (increasing

performance by more than 30%), while experience replay plays only a marginal role on

58

5.2 Experiment 2 - Rogue

Figure 5.10: Experiment 2 - Rogue: Training statistics of the test conducted to under-

stand the effects of sharing layers in the hierarchical structure

Figure 5.11: Experiment 2 - Rogue: Training statistics of the test conducted to compare

naive and generic HRL

the overall performances (increasing performance by less than 10%).

An interesting fact to mention is that the intrinsic reward, given by the adopted count-

based exploration function, shapes the overall reward function similarly to the reward

function adopted in [ACS18].

59

5. Experiments on Generic Hierarchical Reinforcement Learning

Figure 5.12: Experiment 2 - Rogue: Training statistics of the test conducted to under-

stand the effects of proximal optimization

5.3 Experiment 3 - Car Controller

Car Controller is a new environment, described in section 4.1.2.1, that we made for

training Deep RL networks to autonomously drive a car on a road with obstacles.

In this environment:

• roads are represented with splines and splines are used to generate 2D control

points

• obstacles are represented with circles and thus are defined by a 2D point (the

centre) and a radius

• a car is a 2D point with speed and steering angle

60

5.3 Experiment 3 - Car Controller

Figure 5.13: Experiment 2 - Rogue: Training statistics of the test conducted to under-

stand the effects of count-based exploration

The car can see only up to 1m in forward direction and has no knowledge of what it

is outside its field of view. The controller is called in average every µc = 0.1 seconds

(where µc is the mean of an exponential distribution) and at every call/step the car can

change its speed and steering angle. Furthermore the car has the following limitations:

• The maximum acceleration is 0.7 m
s2 .

• The steering angle is in [−30, 30] deg.

• The speed is in [0.1, 1.4]m
s .

At every car action, some random noise is added to the actuators inputs in order to

simulate real environment scenarios:

• Speed noise in [−0.25, 0.25]m
s .

61

5. Experiments on Generic Hierarchical Reinforcement Learning

• Steering angle noise in [−2, 2] deg.

Obstacles spawning is defined by the following constants:

• Maximum obstacle count: 3.

• Random obstacle radius in [0.15, 0.45]m.

At every episode:

• 2 random splines are generated and concatenated in order to form a road.

• An upper speed limit is randomly taken from [0.7, 1.4]m
s .

An episode may end: or when the number of steps is greater than 100, or when the car

has reached the end of the second spline, or when the car has hit an obstacle.

The goal of the car is to follow the path given by control points, to avoid obstacles and

to not exceed the speed limit.

5.3.1 State Representation

The main state is composed by two 5 × 3 matrices:

• The obstacles matrix: has to be a vector of 5 circles. As mentioned before, each

circle is made of 3 floats representing a 2D point for the centre and the radius of

the circle. Only the visible obstacles are fed in this matrix.

• The control points matrix: has to be a vector of 5 equidistant control points repre-

sented with circles having radius 0. Only the visible control points are fed in this

matrix.

All the coordinates defined by the 2D points are expressed with respect to the car point

of view. This means that the car is always in the origin.

The control points are represented with circles just to have the same representation for

obstacles and control points, this way we can put together both obstacles and control

points in a single 2 × 5 × 3 matrix.

62

5.3 Experiment 3 - Car Controller

In the state representation we decided to represent the road using the control points in-

stead of the spline parameters, because using the spline requires to know the exact car

position within a very very small error range (eg: less than 5 cm) in order to properly

avoid collisions, and achieving highly precise positioning may be computationally ex-

pensive due to numerical errors in odometric computations. In fact control points may

be generated using splines but they can also be generated using line detection systems

based on view sensors (eg: video-camera), thus they do not necessary require to know

the exact car position in the world.

Furthermore, there is also a secondary state called “concat” and represented by a 1D

vector with length 4 containing the following information:

• current car steering angle in radians: a float

• current car speed: a float

• seconds passed from last step: a float

• speed upper limit: a float

5.3.2 Reward Function

The goal of the car is to follow the path given by control points, to avoid obstacles

and to not exceed the speed limit. Furthermore, the car should not exceed a maximum

distance ∆max = 0.1m from path, unless some obstacle with radius ρ is on the road. We

shaped the reward function in order to have frequent rewards, as follows:

1. If the car hits an obstacle, then the return is −1.

2. If the car is not moving toward the end of the path, then the return is −0.1.

3. If the euclidean distance δ from path and car is lower than ∆max + ρ, then the car

get a bonus proportional to the space crossed in the step. But if the car exceeds

the upper speed limit, then it gets a malus proportional to the space crossed.

A python pseudo-code of the aforementioned reward function is:

63

5. Experiments on Generic Hierarchical Reinforcement Learning

Algorithm 5.1 : Experiment 3 - Car Controller: Reward function Python code

max_distance_to_path = 0.1

seconds_per_step = 0.1

def get_reward(speed, point, progress, position,

closest_visible_obstacle, speed_limit):

projection_point = get_point_from_spline_x(position)

if closest_visible_obstacle is not None:

ob_point, ob_radius = closest_visible_obstacle

check collision

if euclidean_distance(ob_point,point) <= ob_radius:

return -1 # terminate episode

if euclidean_distance(ob_point, projection_point) <= ob_radius:

could collide obstacle

max_distance_to_path += ob_radius

if position > progress:

is moving toward next position

distance = euclidean_distance(point, projection_point)

distance_ratio = np.clip(distance/max_distance_to_path, 0,1) # always

in [0,1]

inverse_distance_ratio = 1 - distance_ratio

the more speed > speed_limit, the bigger the malus

malus = speed_limit*max(0,speed/speed_limit-1)*seconds_per_step

smaller distances to path give higher rewards

bonus = min(speed,speed_limit)*seconds_per_step*

inverse_distance_ratio

return bonus-malus # do not terminate episode

else is NOT moving toward next position

return -0.1

64

5.3 Experiment 3 - Car Controller

5.3.3 Action Space

Car Controller is an environment for continuous control. In this environment the

car has to control its speed and its steering angle, and both speed and steering angle are

continuous variables.

In all previous experiments we have worked on discrete action spaces modelling the

policy with a categorical distribution. But categorical distributions cannot be used for

continuous actions, because they involve discretization. In a continuous action space

we may model the policy with a normal distribution, and this is what we do in this

experiment.

Let’s go back for a moment to equation 1.11, the formula of logπθ1(a|s) depends to the

chosen distribution for modelling the policy. Thus, if we are going to model policy as

a normal distribution, we have to make the following changes to the network used for

discrete controlling:

• The policy layer has to find the mean µ and the standard deviation σ of a normal

distribution N(µ, σ), instead of the logits of a softmax.

• −logπθ1(a|s) is now the negative log probability density/mass function of N(µ, σ)

given a and s, instead of the softmax cross-entropy.

The numerical values of µ and σ depends on the actions the agent has to perform. For

example, if the agent has to control steering angle in range [−r, r], then a reasonable µ

is in [−r, r] and a reasonable σ is in]0,
√

2r]. What does it imply? At early stages of

the training process the agent has to explore values in those numerical ranges, but the

bigger is r and the more it will be difficult to the agent to casually explore all the possible

numerical values in the range because the numerical changes in the policy parameters

has to be bigger. For this reason we prefer to keep µ ∈ [−1, 1] and σ ∈]0, 1] and then

multiply by r the sample taken from N(µ, σ).

Let µl, σl be the output of the policy layer, then we have:

• µ = clip(µl,−1, 1)

• σ = clip(|σl|, ε, 1), with ε close enough to 0 (eg: ε = 0.0001)

65

5. Experiments on Generic Hierarchical Reinforcement Learning

Please, note that |σl| is used instead of σl because this way we halve the probability of

clipping σl.

Let −1 ≤ a ≤ 1 and −1 ≤ b ≤ 1 be respectively the acceleration and steering val-

ues sampled by the car controller (the agent) using two different normal distribution

following the aforementioned rules, then at every step the new speed will be:

new_speed = old_speed + µc · a ·maximum_acceleration (5.2)

while the new steering angle will be:

new_steering_angle = b ·maximum_steering_angle (5.3)

5.3.3.1 An interesting hypothesis on ψ

At this point of the experiment it is interesting to investigate the meaning of ψ =

−logπθ1(a|s).

When talking about categorical distributions we have that ψ is equivalent to the softmax

cross-entropy. In information theory, cross-entropy can be interpreted as the expected

message-length per datum when a wrong distribution Q is assumed while the data actu-

ally follows a distribution P [Wik18b].

While, when talking about normal distributions we have that ψ is the negative loga-

rithm of the probability density function (PDF) of N(µ, σ). In probability theory, PDF

is a function that estimates a relative likelihood that the value of the random variable

N(µ, σ) would equal the sample [Wik18e].

Cross-entropy and negative log PDF can both be negative, and in the current experiment

scenario it happens very frequently that negative log PDF is lower than 0. But, if we

assume true the information theory point of view, hypothesizing that ψ is an expected

message-length, then we can surely say that ψ ≥ 0. In Section 5.3.5.1 we show some

experimental results that gives some credit to this hypothesis.

5.3.4 Neural Network

The Actor-Critic network for the Car Controller is shown in fig. 5.14. This network

consists of two convolutional layers followed by a dense layer to process spatial depen-

dencies and finally, value and policy output layers.

66

5.3 Experiment 3 - Car Controller

The CNNs have a RELU, a 3 × 3 kernel with unitary stride and respectively 16 and 32

filters. The CNNs output is flattened and it is the input for a FC with RELU and 64

units. We call this structure: shared layers.

The shared layers input is the state representation described in Section 5.3.1.

The output of the shared layers is then concatenated with the “concat” vector (described

in Section 5.3.1) and fed as input for the value and policy layers.

Figure 5.14: Experiment 3 - Car Controller: Neural network architecture. The output

size of each layer is shown between brackets, and h = 2, w = 5, c = 2, e = 4.

5.3.5 Experiment Results

In this section we show the experimental results of different tests with respect to a

baseline with the following hyper-parameters:

Gradient optimizer: Adama) Policy loss: PPOb)

Value loss: Vanillac) Max. batch size: 8d)

Workers number: 4e) Entropy β: 0.001f)

γ: 0.99g) Use GAE: Trueh)

GAE λ: 0.95i) Replay ratio: 1j)

Prioritized replay: Truek) Batch in buffer before starting re-
play: 1

l)

67

5. Experiments on Generic Hierarchical Reinforcement Learning

Save only batches with reward: Truem) Predict reward: Falsen)

α: 3.5e-4o) α decay: Exponential Decayp)

Clip range: 0.2q) Clip range decay: Exponential De-

cay

r)

Partitioner type: Nones) Only non negative entropy: Truet)

Use count-based exploration reward:
False

u)

In the rest of this chapter, unless stated otherwise, when we talk about the performance

of an agent, we refer to the average extrinsic cumulative reward obtained by the agent

during an episode. This average is calculated using the formula described in Section

4.2.3.

The baseline maximum performance is around 6.

Furthermore, in the following tests we will consider some new statistics specific to the

car controller environment:

• “avg_hit”: the average number of collisions with obstacles. Please note that dur-

ing simulations some obstacles can spawn too close to the car and cannot be

avoided.

• “avg_completed”: the percentage of episodes terminated when the car has reached

the end of the second spline.

5.3.5.1 Test 1 - Non-negative ψ

The goal of this first test is to verify the hypothesis described in Section 5.3.3.1.

We want to understand whether ψ is the expected message-length or not. In order to

do it, we set up two identical training environments but in one of them (the baseline)

we keep always ψ ≥ 0 and entropy ≥ 0, where entropy is the function S (πθ|st) used in

eq.2.1. The test results are shown in fig.5.15 and they experimentally give some credit

to the hypothesis that ψ is an expected message-length. As we can see, the baseline

significantly outperforms (by more than 5 performance points) the performance of the

architecture without constraints on ψ.

68

5.3 Experiment 3 - Car Controller

Figure 5.15: Experiment 3 - Car Controller: Training statistics of the test conducted

to investigate the information theory interpretation of entropy

5.3.5.2 Test 2 - HRL and non-markovian temporal dependencies

With this second test we try to understand the role of Hierarchical Reinforcement

Learning and non-markovian temporal dependencies in the Car Controller problem.

Recurrent Neural Networks (RNN) such as the Long-Short Term Memory (LSTM) may

be used for handling temporal dependencies, and in the experiment shown in Fig.5.16

we compare the baseline performance with the performance of a variation of the base-

line having an extra stateful LSTM (of 64 units) followed by a Dropout (with keep

69

5. Experiments on Generic Hierarchical Reinforcement Learning

probability 0.5) between the concatenation layer and the policy and value layers. In

Fig.5.16 we can see that we get more stable results without the aforementioned LSTM

and Dropout layers.

Figure 5.16: Experiment 3 - Car Controller: Training statistics of the test conducted

to understand the role of temporal dependencies

Furthermore, instead of adding an extra LSTM layer we may want to use a hier-

archical architecture for handling non-markovian dependencies. Thus, in the experi-

ment shown in fig.5.17 we compare the baseline with a variation of the baseline using

the same hierarchical structure described in Section 5.2.5, but with no shared layers

70

5.3 Experiment 3 - Car Controller

among models like in the hierarchical structure described in Section 5.1.10. The results

achieved with this new hierarchical architecture are definitely more stable than those

achieved using a stateful LSTM, but the performance is worse by 0.5 points than the

baseline.

Figure 5.17: Experiment 3 - Car Controller: Training statistics of the test conducted

to understand the role of HRL

71

5. Experiments on Generic Hierarchical Reinforcement Learning

5.3.5.3 Test 3 - Experience replay

With this third test we try to understand the role of experience replay in the car

controller problem. As shown in fig.5.18, experience replay plays an important role for

achieving best results (increasing performance by around 1 point) and the experiment

using prioritized experience replay (the baseline) gives the most stable results.

Figure 5.18: Experiment 3 - Car Controller: Training statistics of the test conducted

to understand the role of experience replay

72

5.3 Experiment 3 - Car Controller

5.3.5.4 Test 4 - Proximal Optimization

In the test described in Section 5.2.6.4 we have seen that PVO plays an important

role in the performance of the experiments conducted on Rogue (Section 5.2). With this

fourth and last test we try to understand the role of Proximal Value Optimization (PVO)

in the car controller problem.

In this test we compare the baseline with a baseline variation that uses PVO. As shown

in fig.5.17, using PVO in the car controller problem seems to be not helpful, worsening

the performance by about 0.5 points.

73

5. Experiments on Generic Hierarchical Reinforcement Learning

Figure 5.19: Experiment 3 - Car Controller: Training statistics of the test conducted

to understand the role of PVO

74

Chapter 6

Conclusions

In this thesis we have investigated the advantages that a HRL approach may have

over a simple RL approach, showing examples in which HRL brings concrete advan-

tages (Section 5.1), or examples in where the usefulness of HRL may be uncertain or

none (Sections 5.3, 5.2). But we have also investigated the effect of other interesting

techniques like Experience Replay, Count-Based Exploration and Proximal Optimiza-

tion, using them to solve new and completely different problems/environments like Sen-

timent Analysis (Section 5.1), Rogue with monsters (Section 5.2) and Car Controller

(Section 5.3).

Remarkably, we claim that especially our work in Sentiment Analysis is very innovative

for RL, resulting in state-of-the-art performances; as far as the author knows, Reinforce-

ment Learning (RL) approach is only rarely applied to the domain of computational lin-

guistic and sentiment analysis. Furthermore, our work on the famous video-game Rogue

is probably the first example of Deep RL architecture able to explore Rogue dungeons

and fight against its monsters achieving a success rate of more than 75% on the first

game level. While our work on Car Controller allowed us to make some interesting

considerations on the nature of some components of the policy gradient equation.

But what is the point? The ability to understand and analyse natural language and sen-

timents, and the ability to play games or drive a car are all human skills. Thus, the real

questions now are:

1. Are there commonalities between RL algorithms and human brain? [BBU+18,

75

6. Conclusions

DD08, LG09]

2. Can we describe human intelligence with an algorithm?

76

Appendices

77

Appendix A

Legend

Some words used in this thesis have been abbreviated. Below here you will find the

list of abbreviations with their equivalent meanings.

• eq. ≡ equation

• neq. ≡ disequation

• pg. ≡ page

• fig. ≡ figure

• eg. ≡ example

• sec. ≡ section

• ch. ≡ chapter

79

Bibliography

[ABC+16] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,

Michael Isard, et al. Tensorflow: a system for large-scale machine learn-

ing. In OSDI, volume 16, pages 265–283, 2016.

[Ach01] Dimitris Achlioptas. Database-friendly random projections. In Pro-

ceedings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium

on Principles of database systems, pages 274–281. ACM, 2001.

[ACS18] Andrea Asperti, Daniele Cortesi, and Francesco Sovrano. Crawl-

ing in rogue’s dungeons with (partitioned) a3c. arXiv preprint

arXiv:1804.08685, 2018.

[BBC+16] Francesco Barbieri, Valerio Basile, Danilo Croce, Malvina Nissim,

Nicole Novielli, and Viviana Patti. Overview of the evalita 2016 senti-

ment polarity classification task. In Proceedings of Third Italian Con-

ference on Computational Linguistics (CLiC-it 2016) & Fifth Evaluation

Campaign of Natural Language Processing and Speech Tools for Italian.

Final Workshop (EVALITA 2016), 2016.

[BBN+14] Valerio Basile, Andrea Bolioli, Malvina Nissim, Viviana Patti, and Paolo

Rosso. Evalita 2014 sentipolc task: Task guidelines. Technical report,

Technical report, 2014.

[BBU+18] Andrea Banino, Caswell Barry, Benigno Uria, Charles Blundell, Timothy

Lillicrap, Piotr Mirowski, Alexander Pritzel, Martin J Chadwick, Thomas

80

BIBLIOGRAPHY

Degris, Joseph Modayil, et al. Vector-based navigation using grid-like

representations in artificial agents. Nature, 557(7705):429, 2018.

[BCP+16] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,

John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv

preprint arXiv:1606.01540, 2016.

[Bel13] Richard Bellman. Dynamic programming. Courier Corporation, 2013.

[Ber08] Dimitri P Bertsekas. Neuro-dynamic programming. In Encyclopedia of

optimization, pages 2555–2560. Springer, 2008.

[BES10] Stefano Baccianella, Andrea Esuli, and Fabrizio Sebastiani. Sentiword-

net 3.0: an enhanced lexical resource for sentiment analysis and opinion

mining. In Lrec, volume 10, pages 2200–2204, 2010.

[BHP17] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic archi-

tecture. In AAAI, pages 1726–1734, 2017.

[BL04] Steven Bird and Edward Loper. Nltk: the natural language toolkit. In

Proceedings of the ACL 2004 on Interactive poster and demonstration

sessions, page 31. Association for Computational Linguistics, 2004.

[BMHB+18] Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dab-

ney, Dan Horgan, Alistair Muldal, Nicolas Heess, and Timothy Lillicrap.

Distributed distributional deterministic policy gradients. arXiv preprint

arXiv:1804.08617, 2018.

[Bot12] Matthew Michael Botvinick. Hierarchical reinforcement learning and de-

cision making. Current opinion in neurobiology, 22(6):956–962, 2012.

[Car98] Rich Caruana. Multitask learning. In Learning to learn, pages 95–133.

Springer, 1998.

[Com] CommonCrawl. Commoncrawl. https://commoncrawl.org/.

81

https://commoncrawl.org/

BIBLIOGRAPHY

[Cor79] Daniel D Corkill. Hierarchical planning in a distributed environment. In

IJCAI, volume 79, pages 168–175, 1979.

[DD08] Peter Dayan and Nathaniel D Daw. Decision theory, reinforcement learn-

ing, and the brain. Cognitive, Affective, & Behavioral Neuroscience,

8(4):429–453, 2008.

[DFJ+81] Michael Alan Howarth Dempster, ML Fisher, L Jansen, BJ Lageweg,

Jan Karel Lenstra, and AHG Rinnooy Kan. Analytical evaluation of hier-

archical planning systems. Operations Research, 29(4):707–716, 1981.

[DH93] Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning.

In Advances in neural information processing systems, pages 271–278,

1993.

[DHK+17] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol,

Matthias Plappert, Alec Radford, John Schulman, Szymon Sidor, and

Yuhuai Wu. Openai baselines. GitHub, GitHub repository, 2017.

[e.a] Marius Dupuis e.a. Opendrive format specification, rev. 1.4. http://

opendrive.org/docs/OpenDRIVEFormatSpecRev1.4H.pdf.

[ESM+18] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir

Mnih, Tom Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning,

et al. Impala: Scalable distributed deep-rl with importance weighted

actor-learner architectures. arXiv preprint arXiv:1802.01561, 2018.

[FvHM18] Scott Fujimoto, Herke van Hoof, and Dave Meger. Addressing

function approximation error in actor-critic methods. arXiv preprint

arXiv:1802.09477, 2018.

[GBG+18] Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Armand Joulin, and

Tomas Mikolov. Learning word vectors for 157 languages. In Proceed-

ings of the International Conference on Language Resources and Evalu-

ation (LREC 2018), 2018.

82

http://opendrive.org/docs/OpenDRIVEFormatSpecRev1.4H.pdf
http://opendrive.org/docs/OpenDRIVEFormatSpecRev1.4H.pdf

BIBLIOGRAPHY

[GRMJ15] Debasis Ganguly, Dwaipayan Roy, Mandar Mitra, and Gareth JF Jones.

Word embedding based generalized language model for information re-

trieval. In Proceedings of the 38th international ACM SIGIR conference

on research and development in information retrieval, pages 795–798.

ACM, 2015.

[GWFM+13] Ian J Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville,

and Yoshua Bengio. Maxout networks. arXiv preprint arXiv:1302.4389,

2013.

[HW79] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means

clustering algorithm. Journal of the Royal Statistical Society. Series C

(Applied Statistics), 28(1):100–108, 1979.

[HWT+16] Nicolas Heess, Greg Wayne, Yuval Tassa, Timothy Lillicrap, Martin

Riedmiller, and David Silver. Learning and transfer of modulated lo-

comotor controllers. arXiv preprint arXiv:1610.05182, 2016.

[HZAL18] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft

actor-critic: Off-policy maximum entropy deep reinforcement learning

with a stochastic actor. arXiv preprint arXiv:1801.01290, 2018.

[Izq] Ruben Izquierdo. Opener project - sentiment lexicons. https://

github.com/opener-project/sentiment-lexicons.

[JCD+18] Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy

Lever, Antonio Garcia Castaneda, Charles Beattie, Neil C Rabinowitz,

Ari S Morcos, Avraham Ruderman, et al. Human-level performance in

first-person multiplayer games with population-based deep reinforcement

learning. arXiv preprint arXiv:1807.01281, 2018.

[JMC+16a] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom

Schaul, Joel Z Leibo, David Silver, and Koray Kavukcuoglu. Rein-

forcement learning with unsupervised auxiliary tasks. arXiv preprint

arXiv:1611.05397, 2016.

83

https://github.com/opener-project/sentiment-lexicons
https://github.com/opener-project/sentiment-lexicons

BIBLIOGRAPHY

[JMC+16b] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom

Schaul, Joel Z. Leibo, David Silver, and Koray Kavukcuoglu. Reinforce-

ment learning with unsupervised auxiliary tasks. CoRR, abs/1611.05397,

2016.

[KL51] Solomon Kullback and Richard A Leibler. On information and suffi-

ciency. The annals of mathematical statistics, 22(1):79–86, 1951.

[KNP13] Tomás Kincl, Michal Novák, and Jirí Pribil. Getting inside the minds

of the customers: automated sentiment analysis. In European Confer-

ence on Management, Leadership & Governance, page 122. Academic

Conferences International Limited, 2013.

[LG09] Chi-Tat Law and Joshua I Gold. Reinforcement learning can account

for associative and perceptual learning on a visual-decision task. Nature

neuroscience, 12(5):655, 2009.

[LHC06] Ping Li, Trevor J Hastie, and Kenneth W Church. Very sparse random

projections. In Proceedings of the 12th ACM SIGKDD international con-

ference on Knowledge discovery and data mining, pages 287–296. ACM,

2006.

[LHP+15] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess,

Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Con-

tinuous control with deep reinforcement learning. arXiv preprint

arXiv:1509.02971, 2015.

[LM92] Long-Ji Lin and Tom M Mitchell. Memory approaches to reinforcement

learning in non-Markovian domains. Citeseer, 1992.

[LWT+17] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel,

and Igor Mordatch. Multi-agent actor-critic for mixed cooperative-

competitive environments. In Advances in Neural Information Processing

Systems, pages 6379–6390, 2017.

84

BIBLIOGRAPHY

[MBM+16a] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex

Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray

Kavukcuoglu. Asynchronous methods for deep reinforcement learning.

In International Conference on Machine Learning, pages 1928–1937,

2016.

[MBM+16b] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex

Graves, Timothy P. Lillicrap, Tim Harley, David Silver, and Koray

Kavukcuoglu. Asynchronous methods for deep reinforcement learning.

CoRR, abs/1602.01783, 2016.

[Miy] Kosuke Miyoshi. Unreal implementation. https://github.com/

miyosuda/unreal.

[MKS+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu,

Joel Veness, Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, An-

dreas Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir

Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-

stra, Shane Legg, and Demis Hassabis. Human-level control through deep

reinforcement learning. Nature, 518(7540):529–533, 2015.

[Mos] Moses. Moses. http://www.statmt.org/moses/?n=Moses.

Baseline.

[MSC+13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff

Dean. Distributed representations of words and phrases and their compo-

sitionality. In Advances in neural information processing systems, pages

3111–3119, 2013.

[NLT] NLTK. Tokenize package. http://www.nltk.org/api/nltk.

tokenize.html.

[NRR+16] Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio Sebastiani, and

Veselin Stoyanov. Semeval-2016 task 4: Sentiment analysis in twitter.

85

https://github.com/miyosuda/unreal
https://github.com/miyosuda/unreal
http://www.statmt.org/moses/?n=Moses.Baseline
http://www.statmt.org/moses/?n=Moses.Baseline
http://www.nltk.org/api/nltk.tokenize.html
http://www.nltk.org/api/nltk.tokenize.html

BIBLIOGRAPHY

In Proceedings of the 10th international workshop on semantic evalua-

tion (semeval-2016), pages 1–18, 2016.

[NSSM15] Petra Kralj Novak, Jasmina Smailović, Borut Sluban, and Igor Mozetič.

Sentiment of emojis. PloS one, 10(12):e0144296, 2015.

[PAED17] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell.

Curiosity-driven exploration by self-supervised prediction. In Interna-

tional Conference on Machine Learning (ICML), volume 2017, 2017.

[PFN16] Nicholas Prllochs, Stefan Feuerriegel, and Dirk Neumann. Detecting

negation scopes for financial news sentiment using reinforcement learn-

ing. In System Sciences (HICSS), 2016 49th Hawaii International Con-

ference on, pages 1164–1173. IEEE, 2016.

[PVG+11] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent

Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Pretten-

hofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning

in python. Journal of machine learning research, 12(Oct):2825–2830,

2011.

[RFN17] Sara Rosenthal, Noura Farra, and Preslav Nakov. Semeval-2017 task

4: Sentiment analysis in twitter. In Proceedings of the 11th Interna-

tional Workshop on Semantic Evaluation (SemEval-2017), pages 502–

518, 2017.

[SA18] Adam Stooke and Pieter Abbeel. Accelerated methods for deep reinforce-

ment learning. arXiv preprint arXiv:1803.02811, 2018.

[Sah08] Magnus Sahlgren. The distributional hypothesis. Italian Journal of Dis-

ability Studies, 20:33–53, 2008.

[Sch95] Helmut Schmid. Treetagger| a language independent part-of-speech tag-

ger. Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart,

43:28, 1995.

86

BIBLIOGRAPHY

[SLA+15] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and

Philipp Moritz. Trust region policy optimization. In International Con-

ference on Machine Learning, pages 1889–1897, 2015.

[SLH+14] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wier-

stra, and Martin Riedmiller. Deterministic policy gradient algorithms. In

ICML, 2014.

[SML+15] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and

Pieter Abbeel. High-dimensional continuous control using generalized

advantage estimation. arXiv preprint arXiv:1506.02438, 2015.

[Sova] Francesco Sovrano. Framework for actor-critic deep reinforcement

learning algorithms. https://github.com/Francesco-Sovrano/

Framework-for-Actor-Critic-deep-reinforcement-learning-algorithms.

[Sovb] Francesco Sovrano. Generic hierarchical deep reinforcement learning

for sentiment analysis. https://github.com/Francesco-Sovrano/

Generic-Hierarchical-Deep-Reinforcement-Learning-for-Sentiment-Analysis.

[SP02] Martin Stolle and Doina Precup. Learning options in reinforcement learn-

ing. In International Symposium on abstraction, reformulation, and ap-

proximation, pages 212–223. Springer, 2002.

[SPS99] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps

and semi-mdps: A framework for temporal abstraction in reinforcement

learning. Artificial intelligence, 112(1-2):181–211, 1999.

[SQAS15] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Priori-

tized experience replay. arXiv preprint arXiv:1511.05952, 2015.

[SS00] Ron Sun and Chad Sessions. Self-segmentation of sequences: automatic

formation of hierarchies of sequential behaviors. IEEE Transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics), 30(3):403–418,

2000.

87

https://github.com/Francesco-Sovrano/Framework-for-Actor-Critic-deep-reinforcement-learning-algorithms
https://github.com/Francesco-Sovrano/Framework-for-Actor-Critic-deep-reinforcement-learning-algorithms
https://github.com/Francesco-Sovrano/Generic-Hierarchical-Deep-Reinforcement-Learning-for-Sentiment-Analysis
https://github.com/Francesco-Sovrano/Generic-Hierarchical-Deep-Reinforcement-Learning-for-Sentiment-Analysis

BIBLIOGRAPHY

[Sut96] Richard S Sutton. Generalization in reinforcement learning: Successful

examples using sparse coarse coding. In Advances in neural information

processing systems, pages 1038–1044, 1996.

[SWD+17] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and

Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint

arXiv:1707.06347, 2017.

[Tena] Tensorflow. Tensorflow’s l2 loss. https://www.tensorflow.org/

api_docs/python/tf/nn/l2_loss.

[Tenb] Tensorflow. Tensorflow’s softmax. https://www.tensorflow.org/

api_docs/python/tf/nn/softmax.

[THF+17] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi

Chen, Yan Duan, John Schulman, Filip DeTurck, and Pieter Abbeel. #

exploration: A study of count-based exploration for deep reinforcement

learning. In Advances in Neural Information Processing Systems, pages

2753–2762, 2017.

[VHGS16] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement

learning with double q-learning. In AAAI, volume 2, page 5. Phoenix,

AZ, 2016.

[VMO+16] Alexander Vezhnevets, Volodymyr Mnih, Simon Osindero, Alex Graves,

Oriol Vinyals, John Agapiou, et al. Strategic attentive writer for learning

macro-actions. In Advances in neural information processing systems,

pages 3486–3494, 2016.

[VOS+17] Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas

Heess, Max Jaderberg, David Silver, and Koray Kavukcuoglu. Feu-

dal networks for hierarchical reinforcement learning. arXiv preprint

arXiv:1703.01161, 2017.

88

https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss
https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss
https://www.tensorflow.org/api_docs/python/tf/nn/softmax
https://www.tensorflow.org/api_docs/python/tf/nn/softmax

BIBLIOGRAPHY

[WBH+16] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos,

Koray Kavukcuoglu, and Nando de Freitas. Sample efficient actor-critic

with experience replay. arXiv preprint arXiv:1611.01224, 2016.

[WD92] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learn-

ing, 8(3-4):279–292, 1992.

[Wen18] Lilian Weng. Policy gradient algorithms. https:

//lilianweng.github.io/lil-log/2018/04/08/

policy-gradient-algorithms.html#ddpg, 2018.

[Wik18a] Wikipedia contributors. Cosine similarity — Wikipedia, the free

encyclopedia. https://en.wikipedia.org/w/index.php?title=

Cosine_similarity&oldid=861130874, 2018. [Online; accessed 29-

September-2018].

[Wik18b] Wikipedia contributors. Cross entropy — Wikipedia, the free encyclo-

pedia. https://en.wikipedia.org/w/index.php?title=Cross_

entropy&oldid=860088796, 2018. [Online; accessed 28-September-

2018].

[Wik18c] Wikipedia contributors. F1 score — Wikipedia, the free ency-

clopedia. https://en.wikipedia.org/w/index.php?title=F1_

score&oldid=861659585, 2018. [Online; accessed 29-September-

2018].

[Wik18d] Wikipedia contributors. Matthews correlation coefficient — Wikipedia,

the free encyclopedia. https://en.wikipedia.org/w/index.php?

title=Matthews_correlation_coefficient&oldid=854490628,

2018. [Online; accessed 29-September-2018].

[Wik18e] Wikipedia contributors. Probability density function — Wikipedia,

the free encyclopedia. https://en.wikipedia.org/w/index.php?

title=Probability_density_function&oldid=860853926, 2018.

[Online; accessed 28-September-2018].

89

https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html#ddpg
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html#ddpg
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html#ddpg
https://en.wikipedia.org/w/index.php?title=Cosine_similarity&oldid=861130874
https://en.wikipedia.org/w/index.php?title=Cosine_similarity&oldid=861130874
https://en.wikipedia.org/w/index.php?title=Cross_entropy&oldid=860088796
https://en.wikipedia.org/w/index.php?title=Cross_entropy&oldid=860088796
https://en.wikipedia.org/w/index.php?title=F1_score&oldid=861659585
https://en.wikipedia.org/w/index.php?title=F1_score&oldid=861659585
https://en.wikipedia.org/w/index.php?title=Matthews_correlation_coefficient&oldid=854490628
https://en.wikipedia.org/w/index.php?title=Matthews_correlation_coefficient&oldid=854490628
https://en.wikipedia.org/w/index.php?title=Probability_density_function&oldid=860853926
https://en.wikipedia.org/w/index.php?title=Probability_density_function&oldid=860853926

BIBLIOGRAPHY

[WMG+17] Yuhuai Wu, Elman Mansimov, Roger B Grosse, Shun Liao, and Jimmy

Ba. Scalable trust-region method for deep reinforcement learning using

kronecker-factored approximation. In Advances in neural information

processing systems, pages 5279–5288, 2017.

[Wol] WolframMathWorld. Cubic spline. http://mathworld.wolfram.

com/CubicSpline.html.

90

http://mathworld.wolfram.com/CubicSpline.html
http://mathworld.wolfram.com/CubicSpline.html

	Background Information
	Markov Decision Process
	Partially Observable Markov Decision Process
	Reinforcement Learning
	Value function approximation
	Monte Carlo methods
	Temporal Difference and N-step methods

	Policy function approximation
	On-policy gradient
	Off-policy Gradient

	Actor-Critic

	State-of-the-art for Actor-Critic
	A3C
	GAE
	PPO

	Interesting methods to speed up Reinforcement Learning
	Experience Replay
	Intrinsic Rewards for Exploration
	Count-based exploration
	Curiosity driven exploration

	Unsupervised auxiliary tasks
	Hierarchical Deep Reinforcement Learning
	Options framework

	Software framework used for experiments
	Environments
	Discrete action space
	Rogue
	SENTIPOLC 2016

	Continuous action space
	Car Controller

	Framework
	Experience Replay
	Count-Based Exploration
	Statistics for evaluation metrics

	Experiments on Generic Hierarchical Reinforcement Learning
	Experiment 1 - Sentiment Analysis
	Related Work
	Sentiment Analysis as Markov Decision Process
	Architecture
	Document Preprocessing
	State representation
	Multi-Task Training
	The neural network
	Reward shaping
	Over-fitting mitigation
	Hierarchical Structure
	Hyper-parameters tuning
	Experiment Results and Evaluation

	Experiment 2 - Rogue
	State Representation
	Reward Function
	Action Space
	Neural Network
	Hierarchical Structure
	Experiment Results
	Test 1 - HRL benefits
	Test 2 - Generic vs Naive HRL
	Test 3 - Proximal Optimization
	Test 4 - Count-based exploration and Experience Replay

	Experiment 3 - Car Controller
	State Representation
	Reward Function
	Action Space
	An interesting hypothesis on

	Neural Network
	Experiment Results
	Test 1 - Non-negative
	Test 2 - HRL and non-markovian temporal dependencies
	Test 3 - Experience replay
	Test 4 - Proximal Optimization

	Conclusions
	Appendices
	Legend

