1,158 research outputs found

    Graffiti Networks: A Subversive, Internet-Scale File Sharing Model

    Full text link
    The proliferation of peer-to-peer (P2P) file sharing protocols is due to their efficient and scalable methods for data dissemination to numerous users. But many of these networks have no provisions to provide users with long term access to files after the initial interest has diminished, nor are they able to guarantee protection for users from malicious clients that wish to implicate them in incriminating activities. As such, users may turn to supplementary measures for storing and transferring data in P2P systems. We present a new file sharing paradigm, called a Graffiti Network, which allows peers to harness the potentially unlimited storage of the Internet as a third-party intermediary. Our key contributions in this paper are (1) an overview of a distributed system based on this new threat model and (2) a measurement of its viability through a one-year deployment study using a popular web-publishing platform. The results of this experiment motivate a discussion about the challenges of mitigating this type of file sharing in a hostile network environment and how web site operators can protect their resources

    Compromising Tor Anonymity Exploiting P2P Information Leakage

    Get PDF
    Privacy of users in P2P networks goes far beyond their current usage and is a fundamental requirement to the adoption of P2P protocols for legal usage. In a climate of cold war between these users and anti-piracy groups, more and more users are moving to anonymizing networks in an attempt to hide their identity. However, when not designed to protect users information, a P2P protocol would leak information that may compromise the identity of its users. In this paper, we first present three attacks targeting BitTorrent users on top of Tor that reveal their real IP addresses. In a second step, we analyze the Tor usage by BitTorrent users and compare it to its usage outside of Tor. Finally, we depict the risks induced by this de-anonymization and show that users' privacy violation goes beyond BitTorrent traffic and contaminates other protocols such as HTTP

    Cross-Layer Peer-to-Peer Track Identification and Optimization Based on Active Networking

    Get PDF
    P2P applications appear to emerge as ultimate killer applications due to their ability to construct highly dynamic overlay topologies with rapidly-varying and unpredictable traffic dynamics, which can constitute a serious challenge even for significantly over-provisioned IP networks. As a result, ISPs are facing new, severe network management problems that are not guaranteed to be addressed by statically deployed network engineering mechanisms. As a first step to a more complete solution to these problems, this paper proposes a P2P measurement, identification and optimisation architecture, designed to cope with the dynamicity and unpredictability of existing, well-known and future, unknown P2P systems. The purpose of this architecture is to provide to the ISPs an effective and scalable approach to control and optimise the traffic produced by P2P applications in their networks. This can be achieved through a combination of different application and network-level programmable techniques, leading to a crosslayer identification and optimisation process. These techniques can be applied using Active Networking platforms, which are able to quickly and easily deploy architectural components on demand. This flexibility of the optimisation architecture is essential to address the rapid development of new P2P protocols and the variation of known protocols

    Literature Overview - Privacy in Online Social Networks

    Get PDF
    In recent years, Online Social Networks (OSNs) have become an important\ud part of daily life for many. Users build explicit networks to represent their\ud social relationships, either existing or new. Users also often upload and share a plethora of information related to their personal lives. The potential privacy risks of such behavior are often underestimated or ignored. For example, users often disclose personal information to a larger audience than intended. Users may even post information about others without their consent. A lack of experience and awareness in users, as well as proper tools and design of the OSNs, perpetuate the situation. This paper aims to provide insight into such privacy issues and looks at OSNs, their associated privacy risks, and existing research into solutions. The final goal is to help identify the research directions for the Kindred Spirits project
    • 

    corecore