17 research outputs found

    Non Oblivious Watermarking Technique for JPEG2000 Compressed Images Using Arnold Scrambling of Unequal Size Watermark Blocks

    Full text link
    In this paper, a watermarking technique for JPEG2000 compressed image is proposed. Scrambling of secret message is performed block-wise using Arnold Transform. Secret message is divided into non-overlapping blocks of unequal size and then Arnold transform is applied on each block and secret key is generated based on the periodicity of each block. Scrambled secret message is embedded into qualified significant wavelet coefficients of a cover image. After embedding the secret message into wavelet coefficients, the remaining processes of JPEG2000 standard are executed to compress the watermarked image at different compression rates. Scaling Factor (SF) is used to embed watermark into wavelet coefficients and the value of SF is stored into COM box of the code stream of JPEG2000 compressed image and this SF value and secret key are used to extract the embedded watermark on the receiver side. The performance of the proposed technique is robust to a variety of attacks like image cropping, salt and pepper noise, and rotation. Proposed technique is compared with the existing watermarking techniques for JPEG2000 compressed images to show its effectiveness

    Adaptive Watermarking Scheme Using Biased Shift of Quantization Index

    Get PDF

    Image adaptive watermarking using wavelet transform

    Get PDF
    The availability of versatile multimedia processing software and the far-reaching coverage of the interconnected networks have facilitated flawless copying, manipulations and distribution of the digital multimedia (digital video, audio, text, and images). The ever-advancing storage and retrieval technologies have also smoothed the way for large-scale multimedia database applications. However, abuses of these facilities and technologies pose pressing threats to multimedia security management in general, and multimedia copyright protection and content integrity verification in particular. Although cryptography has a long history of application to information and multimedia security, the undesirable characteristic of providing no protection to the media once decrypted has limited the feasibility of its widespread use. For example, an adversary can obtain the decryption key by purchasing a legal copy of the media but then redistribute the decrypted copies of the original. In response to these challenges; digital watermarking techniques have been proposed in the last decade. Digital watermarking is the procedure whereby secret information (the watermark) is embedded into the host multimedia content, such that it is: (1) hidden, i.e., not perceptually visible; and (2) recoverable, even after the content is degraded by different attacks such as filtering, JPEG compression, noise, cropping etc. The two basic requirements for an effective watermarking scheme, imperceptibility and robustness, conflict with each other. The main focus of this thesis is to provide good tradeoff between perceptual quality of the watermarked image and its robustness against different attacks. For this purpose, we have discussed two robust digital watermarking techniques in discrete wavelet (DWT) domain. One is fusion based watermarking, and other is spread spectrum based watermarking. Both the techniques are image adaptive and employ a contrast sensitivity based human visual system (HVS) model. The HVS models give us a direct way to determine the maximum strength of watermark signal that each portion of an image can tolerate without affecting the visual quality of the image. In fusion based watermarking technique, grayscale image (logo) is used as watermark. In watermark embedding process, both the host image and watermark image are transformed into DWT domain where their coefficients are fused according to a series combination rule that take into account contrast sensitivity characteristics of the HVS. The method repeatedly merges the watermark coefficients strongly in more salient components at the various resolution levels of the host image which provides simultaneous spatial localization and frequency spread of the watermark to provide robustness against different attacks. Watermark extraction process requires original image for watermark extraction. In spread spectrum based watermarking technique, a visually recognizable binary image is used as watermark. In watermark embedding process, the host image is transformed into DWT domain. By utilizing contrast sensitivity based HVS model, watermark bits are adaptively embedded through a pseudo-noise sequence into the middle frequency sub-bands to provide robustness against different attacks. No original image is required for watermark extraction. Simulation results of various attacks are also presented to demonstrate the robustness of both the algorithms. Simulation results verify theoretical observations and demonstrate the feasibility of the digital watermarking algorithms for use in multimedia standards

    An improvement of RGB color image watermarking technique using ISB stream bit and Hadamard matrix

    Get PDF
    In the past half century, the advancement of internet technology has been rapid and widespread. The innovation provides an efficient platform for human communication and other digital applications. Nowadays, everyone can easily access, copy, modify and distribute digital contents for personal or commercial gains. Therefore, a good copyright protection is required to discourage the illicit activities. On way is to watermark the assets by embedding an owner's identity which could later on be used for authentication. Thus far, many watermarking techniques have been proposed which focus on improving three standard measures, visual quality or imperceptibility, robustness and capacity. Although their performances are encouraging, there are still plenty of rooms for improvements. Thus, this study proposes a new watermarking technique using Least Significant Bit (LSB) insertion approach coupled with Hadamard matrix. The technique involves four main stages: Firstly, the cover image is decomposed into three separate channels, Red, Green and Blue. Secondly, the Blue channel is chosen and converted into an eight bit stream. Thirdly, the second least signification bit is selected from the bit stream for embedding. In order to increase the imperceptibility a Hadamard matrix is used to find the best pixels of the cover image for the embedding task. Experimental results on standard dataset have revealed that average PSNR value is greater than 58db, which indicates the watermarked image is visually identical to its original. However, the proposed technique suffers from Gaussian and Poisson noise attacks
    corecore