8 research outputs found

    Hidden Variables in Bipartite Networks

    Full text link
    We introduce and study random bipartite networks with hidden variables. Nodes in these networks are characterized by hidden variables which control the appearance of links between node pairs. We derive analytic expressions for the degree distribution, degree correlations, the distribution of the number of common neighbors, and the bipartite clustering coefficient in these networks. We also establish the relationship between degrees of nodes in original bipartite networks and in their unipartite projections. We further demonstrate how hidden variable formalism can be applied to analyze topological properties of networks in certain bipartite network models, and verify our analytical results in numerical simulations

    The Problem of Action at a Distance in Networks and the Emergence of Preferential Attachment from Triadic Closure

    Full text link
    In this paper, we characterise the notion of preferential attachment in networks as action at a distance, and argue that it can only be an emergent phenomenon -- the actual mechanism by which networks grow always being the closing of triangles. After a review of the concepts of triangle closing and preferential attachment, we present our argument, as well as a simplified model in which preferential attachment can be derived mathematically from triangle closing. Additionally, we perform experiments on synthetic graphs to demonstrate the emergence of preferential attachment in graph growth models based only on triangle closing.Comment: 13 pages, three figure

    Latent Geometry for Complementarity-Driven Networks

    Full text link
    Networks of interdisciplinary teams, biological interactions as well as food webs are examples of networks that are shaped by complementarity principles: connections in these networks are preferentially established between nodes with complementary properties. We propose a geometric framework for complementarity-driven networks. In doing so we first argue that traditional geometric representations, e.g., embeddings of networks into latent metric spaces, are not applicable to complementarity-driven networks due to the contradiction between the triangle inequality in latent metric spaces and the non-transitivity of complementarity. We then propose the cross-geometric representation for these complementarity-driven networks and demonstrate that this representation (i) follows naturally from the complementarity rule, (ii) is consistent with the metric property of the latent space, (iii) reproduces structural properties of real complementarity-driven networks, if the latent space is the hyperbolic disk, and (iv) allows for prediction of missing links in complementarity-driven networks with accuracy surpassing existing similarity-based methods. The proposed framework challenges social network analysis intuition and tools that are routinely applied to complementarity-driven networks and offers new avenues towards descriptive and prescriptive analysis of systems in science of science and biomedicine

    Clustering coefficients for networks with higher order interactions

    Full text link
    We introduce a clustering coefficient for nondirected and directed hypergraphs, which we call the quad clustering coefficient. We determine the average quad clustering coefficient and its distribution in real-world hypergraphs and compare its value with those of random hypergraphs drawn from the configuration model. We find that clustering in real-world hypergraphs is significantly different from those of random hypergraphs. Notably, we find that real-world hypergraphs exhibit a nonnegligible fraction of nodes with a maximal value of the quad clustering coefficient, while we do not find such nodes in random hypergraphs. Moreover, these highly clustered nodes are not observed in an analysis based on the pairwise clustering coefficient of the associated projected graph that has binary interactions, and hence higher order interactions are required to identify nodes with a large quad clustering coefficient.Comment: 29 pages, 18 figure

    Clustering coefficients for networks with higher order interactions

    Get PDF
    We introduce a clustering coefficient for nondirected and directed hypergraphs, which we call the quad clustering coefficient. We determine the average quad clustering coefficient and its distribution in real-world hypergraphs and compare its value with those of random hypergraphs drawn from the configuration model. We find that real-world hypergraphs exhibit a nonnegligible fraction of nodes with a maximal value of the quad clustering coefficient, while we do not find such nodes in random hypergraphs. Interestingly, these highly clustered nodes can have large degrees and can be incident to hyperedges of large cardinality. Moreover, highly clustered nodes are not observed in an analysis based on the pairwise clustering coefficient of the associated projected graph that has binary interactions, and hence higher order interactions are required to identify nodes with a large quad clustering coefficient

    Randomizing bipartite networks: The case of the World Trade Web

    Get PDF
    This is the final version. Available from Nature Research via the DOI in this record. Within the last fifteen years, network theory has been successfully applied both to natural sciences and to socioeconomic disciplines. In particular, bipartite networks have been recognized to provide a particularly insightful representation of many systems, ranging from mutualistic networks in ecology to trade networks in economy, whence the need of a pattern detection-oriented analysis in order to identify statistically-significant structural properties. Such an analysis rests upon the definition of suitable null models, i.e. upon the choice of the portion of network structure to be preserved while randomizing everything else. However, quite surprisingly, little work has been done so far to define null models for real bipartite networks. The aim of the present work is to fill this gap, extending a recently-proposed method to randomize monopartite networks to bipartite networks. While the proposed formalism is perfectly general, we apply our method to the binary, undirected, bipartite representation of the World Trade Web, comparing the observed values of a number of structural quantities of interest with the expected ones, calculated via our randomization procedure. Interestingly, the behavior of the World Trade Web in this new representation is strongly different from the monopartite analogue, showing highly non-trivial patterns of self-organization.GROWTHCO

    Social Data Mining for Crime Intelligence

    Get PDF
    With the advancement of the Internet and related technologies, many traditional crimes have made the leap to digital environments. The successes of data mining in a wide variety of disciplines have given birth to crime analysis. Traditional crime analysis is mainly focused on understanding crime patterns, however, it is unsuitable for identifying and monitoring emerging crimes. The true nature of crime remains buried in unstructured content that represents the hidden story behind the data. User feedback leaves valuable traces that can be utilised to measure the quality of various aspects of products or services and can also be used to detect, infer, or predict crimes. Like any application of data mining, the data must be of a high quality standard in order to avoid erroneous conclusions. This thesis presents a methodology and practical experiments towards discovering whether (i) user feedback can be harnessed and processed for crime intelligence, (ii) criminal associations, structures, and roles can be inferred among entities involved in a crime, and (iii) methods and standards can be developed for measuring, predicting, and comparing the quality level of social data instances and samples. It contributes to the theory, design and development of a novel framework for crime intelligence and algorithm for the estimation of social data quality by innovatively adapting the methods of monitoring water contaminants. Several experiments were conducted and the results obtained revealed the significance of this study in mining social data for crime intelligence and in developing social data quality filters and decision support systems
    corecore