200 research outputs found

    Evaluation of LS-DYNA MAT162 for Modeling Composite Fastener Joints for High Rates of Loading

    Get PDF
    In the present work, the behavior of composite-fastener joints in bearing failure at dynamic stroke rates of 500 in/s, 300 in/s and 100 in/s has been evaluated through progressive damage analysis (PDA) material model in LS-DYNA, namely MAT162. Two joint types: titanium pin and Hi-Lok fastener were analyzed to identify the differences between without and with preload conditions. A meso-level approach where each lamina was modeled separately was employed and a contact definition based on fracture toughness data was defined to represent composite delamination behavior. Test fixture had been modeled in a detailed manner to account for the dynamic effects and the simulation results were validated against experimental data. Preliminary test-analysis correlation indicated that MAT162 predicted results conservatively when compared to tests. Debris accumulation were observed to greatly affect the test results which were not considered in the current modelling strategies

    Investigation of Super*Zip separation joint

    Get PDF
    An investigation to determine the most likely cause of two failures of five tests on 79 inch diameter Lockheed Super*Zip spacecraft separation joints being used for the development of a Shuttle/Centaur propulsion system. This joint utilizes an explosively expanded tube to fracture surrounding prenotched aluminum plates to achieve planar separation. A test method was developed and more than 300 tests firings were made to provide an understanding of severance mechanisms and the functional performance effects of system variables. An approach for defining functional margin was developed, and specific recommendations were made for improving existing and future systems

    Flight service evaluation of advanced composite ailerons on the L-1011 transport aircraft

    Get PDF
    This report covers flight evaluation of composite inboard ailerons on the L-1011 under Contract NAS 1-15069 for a period of five years. This is the fourth annual report of the maintenance evaluation program, and covers the period from May 1985 when the third yearly inspections were completed, through July 1986. Four shipsets of graphite/epoxy composite inboard ailerons were installed on L-1011 aircraft for this maintenance evaluation program. These include two Delta aircraft and two TWA aircraft. A fifth shipset of composite ailerons was installed in 1980 on Lockheed's flight test L-1011. One instance of minor damage was observed on one of the composite ailerons and was repaired. No other maintenance actions have occurred on any of the composite parts except for repainting of areas with paint loss. Flight hours on the airline components at the time of inspection ranged from 12,051]en1] to 14,046 hours, after approximately 4 years of service

    Elastic-Plastic Nonlinear Response of a Space Shuttle External Tank Stringer

    Get PDF
    Elastic-plastic, large-deflection nonlinear thermo-mechanical stress analyses are performed for the Space Shuttle external tank s intertank stringers. Detailed threedimensional finite element models are developed and used to investigate the stringer s elastic-plastic response for different thermal and mechanical loading events from assembly through flight. Assembly strains caused by initial installation on an intertank panel are accounted for in the analyses. Thermal loading due to tanking was determined to be the bounding loading event. The cryogenic shrinkage caused by tanking resulted in a rotation of the intertank chord flange towards the center of the intertank, which in turn loaded the intertank stringer feet. The analyses suggest that the strain levels near the first three fasteners remain sufficiently high that a failure may occur. The analyses also confirmed that the installation of radius blocks on the stringer feet ends results in an increase in the stringer capability

    Design, ancillary testing, analysis and fabrication data for the advanced composite stabilizer for Boeing 737 aircraft, volume 2

    Get PDF
    Results of tests conducted to demonstrate that composite structures save weight, possess long term durability, and can be fabricated at costs competitive with conventional metal structures are presented with focus on the use of graphite-epoxy in the design of a stabilizer for the Boeing 737 aircraft. Component definition, materials evaluation, material design properties, and structural elements tests are discussed. Fabrication development, as well as structural repair and inspection are also examined

    Computational Study of Fatigue Fracture in Rivet Housing of an Aeronautical Aluminum Alloy 7075-T6

    Full text link
    This article describes computerized traction testing through the ANSYS software in aircraft materials, aluminum 7075-T6, which leads to variations of the strength limits with the stress concentration factor in the rivet cavity. However, was performed with a change in the radius of transition from the head to the body of the rivet in order to alleviate the stress concentrations within the rivet bore and improve the strength of the part by 5.25% with no relevant change in part displacement. The fatigue strength limit was higher in the samples without of the burr operation, observing that the geometric trunk of the section generated a decrease of 18.27% in the maximum plate stresses, with better uniformity in the tension distribution of the rivets, with a displacement of 3.125% and a minimum equivalent stress of 2.39% and a maximum of 24%, justifying the cause of the fracture in the riveting region

    Finite element modelling for the dynamic behaviour analysis of a structure with Hi-Lok fasteners / Muhammad Syafiq Aiman Mohd Kahar ... [et al.]

    Get PDF
    The number of Hi-Lok fasteners used in the assembly of aircraft structures is very high. For this reason, an efficient modelling technique is required to accurately analyse the dynamic behaviour of the structures. In this study, a modelling technique with special emphasis on Hi-Lok modelling is proposed to analyse the dynamic behaviour of a test structure with Hi-Lok fasteners. Four different finite element (FE) models to represent the test structure with the Hi-Lok fasteners were developed using MSC Software packages. The natural frequencies and mode shapes obtained from the FE models are compared with those of the Experimental Modal Analysis (EMA) in terms of total error, computational time and memory disk usage. It was found that the model D with the simplified beams representing Hi-Lok predicts the dynamic behaviour of the test structure with an accuracy of 96.6% and with comparatively low computational time and memory disk usage. This proposed modelling scheme may provide useful approaches to aircraft researchers and engineers for the dynamic analysis of the structures
    corecore