2,727 research outputs found

    Controllability Analysis and Degraded Control for a Class of Hexacopters Subject to Rotor Failures

    Full text link
    This paper considers the controllability analysis and fault tolerant control problem for a class of hexacopters. It is shown that the considered hexacopter is uncontrollable when one rotor fails, even though the hexacopter is over-actuated and its controllability matrix is row full rank. According to this, a fault tolerant control strategy is proposed to control a degraded system, where the yaw states of the considered hexacopter are ignored. Theoretical analysis indicates that the degraded system is controllable if and only if the maximum lift of each rotor is greater than a certain value. The simulation and experiment results on a prototype hexacopter show the feasibility of our controllability analysis and degraded control strategy.Comment: 21 pages, 7 figures, submitted to Journal of Intelligent & Robotic System

    Mars Science Helicopter Conceptual Design

    Get PDF
    Robotic planetary aerial vehicles increase the range of terrain that can be examined, compared to traditional landers and rovers, and have more near-surface capability than orbiters. Aerial mobility is a promising possibility for planetary exploration as it reduces the challenges that difficult obstacles pose to ground vehicles. The first use of a rotorcraft for a planetary mission will be in 2021, when the Mars Helicopter technology demonstrator will be deployed from the Mars 2020 rover. The Jet Propulsion Laboratory and NASA Ames Research Center are exploring possibilities for a Mars Science Helicopter, a second-generation Mars rotorcraft with the capability of conducting science investigations independently of a lander or rover (although this type of vehicle could also be used assist rovers or landers in future missions). This report describes the conceptual design of Mars Science Helicopters. The design process began with coaxial-helicopter and hexacopter configurations, with a payload in the range of two to three kilograms and an overall vehicle mass of approximately twenty kilograms. Initial estimates of weight and performance were based on the capabilities of the Mars Helicopter. Rotorcraft designs for Mars are constrained by the dimensions of the aeroshell for the trip to the planet, requiring attention to the aircraft packaging in order to maximize the rotor dimensions and hence overall performance potential. Aerodynamic performance optimization was conducted, particularly through airfoils designed specifically for the low Reynolds number and high Mach number inherent in operation on Mars. The final designs show a substantial capability for science operations on Mars: a 31 kg hexacopter that fits within a 2.5 m diameter aeroshell could carry a 5 kg payload for 10 min of hover time or over a range of 5 km

    PAC: A Novel Self-Adaptive Neuro-Fuzzy Controller for Micro Aerial Vehicles

    Full text link
    There exists an increasing demand for a flexible and computationally efficient controller for micro aerial vehicles (MAVs) due to a high degree of environmental perturbations. In this work, an evolving neuro-fuzzy controller, namely Parsimonious Controller (PAC) is proposed. It features fewer network parameters than conventional approaches due to the absence of rule premise parameters. PAC is built upon a recently developed evolving neuro-fuzzy system known as parsimonious learning machine (PALM) and adopts new rule growing and pruning modules derived from the approximation of bias and variance. These rule adaptation methods have no reliance on user-defined thresholds, thereby increasing the PAC's autonomy for real-time deployment. PAC adapts the consequent parameters with the sliding mode control (SMC) theory in the single-pass fashion. The boundedness and convergence of the closed-loop control system's tracking error and the controller's consequent parameters are confirmed by utilizing the LaSalle-Yoshizawa theorem. Lastly, the controller's efficacy is evaluated by observing various trajectory tracking performance from a bio-inspired flapping-wing micro aerial vehicle (BI-FWMAV) and a rotary wing micro aerial vehicle called hexacopter. Furthermore, it is compared to three distinctive controllers. Our PAC outperforms the linear PID controller and feed-forward neural network (FFNN) based nonlinear adaptive controller. Compared to its predecessor, G-controller, the tracking accuracy is comparable, but the PAC incurs significantly fewer parameters to attain similar or better performance than the G-controller.Comment: This paper has been accepted for publication in Information Science Journal 201

    Recent Efforts Enabling Martian Rotorcraft Missions

    Get PDF
    The Mars Helicopter (MH), launching as a part of the Mars 2020 mission, will begin a new era of planetary exploration. Mars research has historically been conducted through landers, rovers, and satellites. As both government and private industries prepare for human exploration of the Martian surface within two decades, more in depth knowledge of what awaits on the surface is critical. Planetary aerial vehicles increase the range of terrain that can be examined, compared to traditional landers and rovers and have more near surface capability than orbiters. The Jet Propulsion Laboratory (JPL) and NASA Ames are currently exploring possibilities for a Mars Science Helicopter (MSH), a second-generation Mars rotorcraft with the capability of conducting science investigations independently of a lander or rover (although this type of vehicle could also be used assist rovers or landers in future missions). Preliminary designs of coaxial-helicopter and hexacopter configurations have targeted the minimum capability of lifting a payload in the range of two to three kilograms with an overall vehicle mass of approximately twenty kilograms. These MSH designs sizes are constrained by the aeroshell dimensions(currently focused on employing legacy Pathfinder or MSL aeroshells), rather than vehicle structural or aeroperformance limitations. Feasibility of the MSH configurations has been investigated considering packaging/deployment, rotor aerodynamics, and structural analysis studies. Initial findings suggest not only the overall feasibility of MSH configurations but also indicate that improvements up to 11.1 times increase in range or 1.3 times increase in hover time might be achievable, even with an additional science payload, compared to the current design of the MH
    corecore