1,523 research outputs found

    Heuristics with Performance Guarantees for the Minimum Number of Matches Problem in Heat Recovery Network Design

    Get PDF
    Heat exchanger network synthesis exploits excess heat by integrating process hot and cold streams and improves energy efficiency by reducing utility usage. Determining provably good solutions to the minimum number of matches is a bottleneck of designing a heat recovery network using the sequential method. This subproblem is an NP-hard mixed-integer linear program exhibiting combinatorial explosion in the possible hot and cold stream configurations. We explore this challenging optimization problem from a graph theoretic perspective and correlate it with other special optimization problems such as cost flow network and packing problems. In the case of a single temperature interval, we develop a new optimization formulation without problematic big-M parameters. We develop heuristic methods with performance guarantees using three approaches: (i) relaxation rounding, (ii) water filling, and (iii) greedy packing. Numerical results from a collection of 51 instances substantiate the strength of the methods

    A Conceptual Efficient Design Of Energy Recovery Systems Using A New Energy-area Key Parameter

    Get PDF
    Energy integration in petrochemical and refining industries is an effective concept to minimize dependence on heating and cooling utilities through networks of exchanger equipment. Pinch Analysis is very popular and successful technique to optimize heat recovery between heat sources and sinks. Yet, design of networks of exchangers is challenging and requires careful attention to energy consumption and exchanger areas. This work presents a graphical methodology to design exchanger networks taking into account both heat loads and transfer areas of exchanger units in one single information. A new parameter is introduced for design that is the ratio between the heat load and the exchanger area and is determined in kW/m2. It is defined as an energy-area parameter expressing how much heat the exchanger would transfer per every meter square of area. Such parameter will be valuable key in design to screen matches of exchangers providing that both the heat and area are considered. The higher the value of the parameter, the better the performance of the exchanger, i.e. maximum heat transfer rate for minimum exchanger area. The design methodology embedding the energy-area parameter guarantees HEN designs with energy targets and minimum areas. A case is studied for the production of 100,000 t/y of dimethyl ether. An optimum network is generated by applying the new parameter with less exchanger areas and hot utility of 25% and 30%, respectively compared with an automated design by Aspen Energy Analyzer®. Also, substantial savings of about 47% in the total cost of the network are earned

    Design of consistently near-optimal heat exchanger networks by a two-stage optimisation approach

    Get PDF
    Bibliography: pages 225-231.Research in the field of Heat Exchanger Network Synthesis has been active as far back as 1965. Although the problem statement has remained essentially unchanged since then, numerous techniques have been developed to solve the heat exchange problem. Despite significant progress achieved over the years, a number of design issues remain unresolved or vaguely understood. Consequently, consistent generation of near-optimal heat exchanger networks is not guaranteed. This project has therefore been undertaken to develop a flexible design technique that can be used to gain further insight into the nature of a heat exchanger network. The objective of this project was to develop a network design technique that could be used to consistently generate networks that are near optimal. The main feature of the network design technique developed is the application of the optimisation process at two levels. The first level is match optimisation, and the second level is network optimisation. The objective function to be minimised is the total annual cost. The total annual cost is the sum of the annual cost of energy and the annual cost of capital. The annual cost of energy is the sum of the annual costs of hot utilities and cold utilities. The annual cost of capital is the sum of the annual costs of process, hot utility, and cold utility exchangers

    Efficient Deformable Shape Correspondence via Kernel Matching

    Full text link
    We present a method to match three dimensional shapes under non-isometric deformations, topology changes and partiality. We formulate the problem as matching between a set of pair-wise and point-wise descriptors, imposing a continuity prior on the mapping, and propose a projected descent optimization procedure inspired by difference of convex functions (DC) programming. Surprisingly, in spite of the highly non-convex nature of the resulting quadratic assignment problem, our method converges to a semantically meaningful and continuous mapping in most of our experiments, and scales well. We provide preliminary theoretical analysis and several interpretations of the method.Comment: Accepted for oral presentation at 3DV 2017, including supplementary materia

    Design of Heat Integrated Low Temperature Distillation Systems

    Get PDF

    A pinch-based method for defining pressure manipulation routes in work and heat exchange networks

    Get PDF
    Aiming for more energetically efficient and sustainable solutions, academic attention to work and heat integration (WHI) has grown in the last decade. Simultaneous models for work and heat exchanger network (WHEN) synthesis often derive from heat integration (HI) frameworks. However, it can be noted that simultaneous optimization models for WHI are considerably more complex to solve than in the HI case. The design of efficient pressure manipulation routes (i.e., allocation and sizing of compression and expansion machinery) in process streams prior to heat exchange match allocation can make the optimization procedure more efficient. This work proposes a systematic procedure based on a model that employs Pinch Analysis concepts for defining these routes based on capital and operating cost targets. The solution approach is a hybrid meta-heuristic method based on Simulated Annealing (SA) and Particle Swarm Optimization (PSO). The obtained routes are then converted into a HI problem by fixing pressure manipulation unit sizes. The detailed HI solution is finally transferred into a WHI optimization model as initial design. In the two tackled examples, the total annual costs (TAC) predicted by the Pinch-based model differed by 0.5% and 1.2% from the final optimized WHEN obtained in the detailed WHI framework.The authors gratefully acknowledge the financial support from the Coordination for the Improvement of Higher Education Personnel – Processes 88887.360812/2019–00 and 88881.171419/2018–01 – CAPES (Brazil) and the National Council for Scientific and Technological Development – Processes 305055/2017–8, 428650/2018–0 and 311807/2018–6 – CNPq (Brazil)
    • …
    corecore