1,494 research outputs found

    A Multi-Criteria Meta-Fuzzy-Scheduler for Independent Tasks in Grid Computing

    Get PDF
    The paradigm of distributed computation in heterogeneous resources, grid computing, has given rise to a large amount of research on resource scheduling. This paper presents a Meta-Scheduler for grid computing that does not need any given information about tasks length or tasks arrival time unlike traditional dynamic heuristics. Our Meta-Scheduler is of multi-criteria type, because it solves two conflicting objectives: minimize the makespan of a set of tasks and distribute these tasks in a balanced way among the resources of the Grid. Experimental results using fuzzy scheduler show that, through our proposal, we achieve these two objectives and improve dynamic heuristics presented in prior literature

    The Performability Manager

    Get PDF
    The authors describe the performability manager, a distributed system component that contributes to a more effective and efficient use of system components and prevents quality of service (QoS) degradation. The performability manager dynamically reconfigures distributed systems whenever needed, to recover from failures and to permit the system to evolve over time and include new functionality. Large systems require dynamic reconfiguration to support dynamic change without shutting down the complete system. A distributed system monitor is needed to verify QoS. Monitoring a distributed system is difficult because of synchronization problems and minor differences in clock speeds. The authors describe the functionality and the operation of the performability manager (both informally and formally). Throughout the paper they illustrate the approach by an example distributed application: an ANSAware-based number translation service (NTS), from the intelligent networks (IN) area

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    On the Use of Hybrid Heuristics for Providing Service to Select the Return Channel in an Interactive Digital TV Environment

    Get PDF
    The technologies used to link the end-user to a telecommunication infrastructure, has been changing over time due to the consolidation of new access technologies. Moreover, the emergence of new tools for information dissemination, such as interactive digital TV, makes the selection of access technology, factor of fundamental importance. One of the greatest advantages of using digital TV as means to disseminate information is the installation of applications. In this chapter, a load characterization of a typical application embedded in a digital TV is performed to determine its behavior. However, it is important to note that applications send information through an access technology. Therefore, this chapter, based on the study on load characterization, developed a methodology combining Bayesian networks and technique for order preference by similarity to ideal solution (TOPSIS) analytical approach to provide support to service providers to opt for a technology (power line communication, PLC, wireless, wired, etc.) for the return channel

    An Energy Aware Resource Utilization Framework to Control Traffic in Cloud Network and Overloads

    Get PDF
    Energy consumption in cloud computing occur due to the unreasonable way in which tasks are scheduled. So energy aware task scheduling is a major concern in cloud computing as energy consumption results into significant waste of energy, reduce the profit margin and also high carbon emissions which is not environmentally sustainable. Hence, energy efficient task scheduling solutions are required to attain variable resource management, live migration, minimal virtual machine design, overall system efficiency, reduction in operating costs, increasing system reliability, and prompting environmental protection with minimal performance overhead. This paper provides a comprehensive overview of the energy efficient techniques and approaches and proposes the energy aware resource utilization framework to control traffic in cloud networks and overloads
    corecore