2,822 research outputs found

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Optimal Base Station Placement: A Stochastic Method Using Interference Gradient In Downlink Case

    Get PDF
    In this paper, we study the optimal placement and optimal number of base stations added to an existing wireless data network through the interference gradient method. This proposed method considers a sub-region of the existing wireless data network, hereafter called region of interest. In this region, the provider wants to increase the network coverage and the users throughput. In this aim, the provider needs to determine the optimal number of base stations to be added and their optimal placement. The proposed approach is based on the Delaunay triangulation of the region of interest and the gradient descent method in each triangle to compute the minimum interference locations. We quantify the increase of coverage and throughput.Comment: This work has been presented in the 5th International ICST Conference on Performance Evaluation Methodologies and Tools (Valuetools 2011

    A Novel Energy-Efficient MAC Aware Data Aggregation Routing in Wireless Sensor Networks#

    Get PDF
    Embedding data-aggregation capabilities into sensor nodes of wireless networks could save energy by reducing redundant data flow transmissions. Existing research describes the construction of data aggregation trees to maximize data aggregation times in order to reduce data transmission of redundant data. However, aggregation of more nodes on the same node will incur significant collisions. These MAC (Media Access Control) layer collisions introduce additional data retransmissions that could jeopardize the advantages of data aggregation. This paper is the first to consider the energy consumption tradeoffs between data aggregation and retransmissions in a wireless sensor network. By using the existing CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) MAC protocol, the retransmission energy consumption function is well formulated. This paper proposes a novel non-linear mathematical formulation, whose function is to minimize the total energy consumption of data transmission subject to data aggregation trees and data retransmissions. This solution approach is based on Lagrangean relaxation, in conjunction with optimization-based heuristics. From the computational experiments, it is shown that the proposed algorithms could construct MAC aware data aggregation trees that are up to 59% more energy efficient than existing data aggregation algorithms

    Multi-Level Multi-Objective Programming and Optimization for Integrated Air Defense System Disruption

    Get PDF
    The U.S. military\u27s ability to project military force is being challenged. This research develops and demonstrates the application of three respective sensor location, relocation, and network intrusion models to provide the mathematical basis for the strategic engagement of emerging technologically advanced, highly-mobile, Integrated Air Defense Systems. First, we propose a bilevel mathematical programming model for locating a heterogeneous set of sensors to maximize the minimum exposure of an intruder\u27s penetration path through a defended region. Next, we formulate a multi-objective, bilevel optimization model to relocate surviving sensors to maximize an intruder\u27s minimal expected exposure to traverse a defended border region, minimize the maximum sensor relocation time, and minimize the total number of sensors requiring relocation. Lastly, we present a trilevel, attacker-defender-attacker formulation for the heterogeneous sensor network intrusion problem to optimally incapacitate a subset of the defender\u27s sensors and degrade a subset of the defender\u27s network to ultimately determine the attacker\u27s optimal penetration path through a defended network
    • …
    corecore