1,201 research outputs found

    Prediction of scientific collaborations through multiplex interaction networks

    Get PDF
    Link prediction algorithms can help to understand the structure and dynamics of scientific collaborations and the evolution of Science. However, available algorithms based on similarity between nodes of collaboration networks are bounded by the limited amount of links present in these networks. In this work, we reduce the latter intrinsic limitation by generalizing the Adamic-Adar method to multiplex networks composed by an arbitrary number of layers, that encode diverse forms of scientific interactions. We show that the new metric outperforms other single-layered, similarity-based scores and that scientific credit, represented by citations, and common interests, measured by the usage of common keywords, can be predictive of new collaborations. Our work paves the way for a deeper understanding of the dynamics driving scientific collaborations, and provides a new algorithm for link prediction in multiplex networks that can be applied to a plethora of systems

    Kantian fractionalization predicts the conflict propensity of the international system

    Get PDF
    The study of complex social and political phenomena with the perspective and methods of network science has proven fruitful in a variety of areas, including applications in political science and more narrowly the field of international relations. We propose a new line of research in the study of international conflict by showing that the multiplex fractionalization of the international system (which we label Kantian fractionalization) is a powerful predictor of the propensity for violent interstate conflict, a key indicator of the system's stability. In so doing, we also demonstrate the first use of multislice modularity for community detection in a multiplex network application. Even after controlling for established system-level conflict indicators, we find that Kantian fractionalization contributes more to model fit for violent interstate conflict than previously established measures. Moreover, evaluating the influence of each of the constituent networks shows that joint democracy plays little, if any, role in predicting system stability, thus challenging a major empirical finding of the international relations literature. Lastly, a series of Granger causal tests shows that the temporal variability of Kantian fractionalization is consistent with a causal relationship with the prevalence of conflict in the international system. This causal relationship has real-world policy implications as changes in Kantian fractionalization could serve as an early warning sign of international instability.Comment: 17 pages + 17 pages designed as supplementary online materia

    Heterogeneous Multi-Layered Network Model for Omics Data Integration and Analysis

    Get PDF
    Advances in next-generation sequencing and high-throughput techniques have enabled the generation of vast amounts of diverse omics data. These big data provide an unprecedented opportunity in biology, but impose great challenges in data integration, data mining, and knowledge discovery due to the complexity, heterogeneity, dynamics, uncertainty, and high-dimensionality inherited in the omics data. Network has been widely used to represent relations between entities in biological system, such as protein-protein interaction, gene regulation, and brain connectivity (i.e. network construction) as well as to infer novel relations given a reconstructed network (aka link prediction). Particularly, heterogeneous multi-layered network (HMLN) has proven successful in integrating diverse biological data for the representation of the hierarchy of biological system. The HMLN provides unparalleled opportunities but imposes new computational challenges on establishing causal genotype-phenotype associations and understanding environmental impact on organisms. In this review, we focus on the recent advances in developing novel computational methods for the inference of novel biological relations from the HMLN. We first discuss the properties of biological HMLN. Then we survey four categories of state-of-the-art methods (matrix factorization, random walk, knowledge graph, and deep learning). Thirdly, we demonstrate their applications to omics data integration and analysis. Finally, we outline strategies for future directions in the development of new HMLN models

    Predicting Scientific Success Based on Coauthorship Networks

    Full text link
    We address the question to what extent the success of scientific articles is due to social influence. Analyzing a data set of over 100000 publications from the field of Computer Science, we study how centrality in the coauthorship network differs between authors who have highly cited papers and those who do not. We further show that a machine learning classifier, based only on coauthorship network centrality measures at time of publication, is able to predict with high precision whether an article will be highly cited five years after publication. By this we provide quantitative insight into the social dimension of scientific publishing - challenging the perception of citations as an objective, socially unbiased measure of scientific success.Comment: 21 pages, 2 figures, incl. Supplementary Materia
    • …
    corecore