7 research outputs found

    Programming Languages for Distributed Computing Systems

    Get PDF
    When distributed systems first appeared, they were programmed in traditional sequential languages, usually with the addition of a few library procedures for sending and receiving messages. As distributed applications became more commonplace and more sophisticated, this ad hoc approach became less satisfactory. Researchers all over the world began designing new programming languages specifically for implementing distributed applications. These languages and their history, their underlying principles, their design, and their use are the subject of this paper. We begin by giving our view of what a distributed system is, illustrating with examples to avoid confusion on this important and controversial point. We then describe the three main characteristics that distinguish distributed programming languages from traditional sequential languages, namely, how they deal with parallelism, communication, and partial failures. Finally, we discuss 15 representative distributed languages to give the flavor of each. These examples include languages based on message passing, rendezvous, remote procedure call, objects, and atomic transactions, as well as functional languages, logic languages, and distributed data structure languages. The paper concludes with a comprehensive bibliography listing over 200 papers on nearly 100 distributed programming languages

    The shared data-object model as a paradigm for programming distributed systems

    Get PDF

    PrologPF: Parallel Logic and Functions on the Delphi Machine

    Get PDF
    PrologPF is a parallelising compiler targeting a distributed system of general purpose workstations connected by a relatively low performance network. The source language extends standard Prolog with the integration of higher-order functions. The execution of a compiled PrologPF program proceeds in a similar manner to standard Prolog, but uses oracles in one of two modes. An oracle represents the sequence of clauses used to reach a given point in the problem search tree, and the same PrologPF executable can be used to build oracles, or follow oracles previously generated. The parallelisation strategy used by PrologPF proceeds in two phases, which this research shows can be interleaved. An initial phase searches the problem tree to a limited depth, recording the discovered incomplete paths. In the second phase these paths are allocated to the available processors in the network. Each processor follows its assigned paths and fully searches the referenced subtree, sending solutions back to a control processor. This research investigates the use of the technique with a one-time partitioning of the problem and no further scheduling communication, and with the recursive application of the partitioning technique to effect dynamic work reassignment. For a problem requiring all solutions to be found, execution completes when all the distributed processors have completed the search of their assigned subtrees. If one solution is required, the execution of all the path processors is terminated when the control processor receives the first solution. The presence of the extra-logical Prolog predicate cut in the user program conflicts with the use of oracles to represent valid open subtrees. PrologPF promotes the use of higher-order functional programming as an alternative to the use of cut. The combined language shows that functional support can be added as a consistent extension to standard Prolog

    The exploitation of parallelism on shared memory multiprocessors

    Get PDF
    PhD ThesisWith the arrival of many general purpose shared memory multiple processor (multiprocessor) computers into the commercial arena during the mid-1980's, a rift has opened between the raw processing power offered by the emerging hardware and the relative inability of its operating software to effectively deliver this power to potential users. This rift stems from the fact that, currently, no computational model with the capability to elegantly express parallel activity is mature enough to be universally accepted, and used as the basis for programming languages to exploit the parallelism that multiprocessors offer. To add to this, there is a lack of software tools to assist programmers in the processes of designing and debugging parallel programs. Although much research has been done in the field of programming languages, no undisputed candidate for the most appropriate language for programming shared memory multiprocessors has yet been found. This thesis examines why this state of affairs has arisen and proposes programming language constructs, together with a programming methodology and environment, to close the ever widening hardware to software gap. The novel programming constructs described in this thesis are intended for use in imperative languages even though they make use of the synchronisation inherent in the dataflow model by using the semantics of single assignment when operating on shared data, so giving rise to the term shared values. As there are several distinct parallel programming paradigms, matching flavours of shared value are developed to permit the concise expression of these paradigms.The Science and Engineering Research Council

    Studies related to the process of program development

    Get PDF
    The submitted work consists of a collection of publications arising from research carried out at Rhodes University (1970-1980) and at Heriot-Watt University (1980-1992). The theme of this research is the process of program development, i.e. the process of creating a computer program to solve some particular problem. The papers presented cover a number of different topics which relate to this process, viz. (a) Programming methodology programming. (b) Properties of programming languages. aspects of structured. (c) Formal specification of programming languages. (d) Compiler techniques. (e) Declarative programming languages. (f) Program development aids. (g) Automatic program generation. (h) Databases. (i) Algorithms and applications
    corecore