16,183 research outputs found

    Heuristic search for equivalence checking

    Get PDF
    Equivalence checking plays a crucial role in formal verification since it is a natural relation for expressing the matching of a system implementation against its specification. In this paper, we present an efficient procedure, based on heuristic search, for checking well-known bisimulation equivalences for concurrent systems specified through process algebras. The method tries to improve, with respect to other solutions, both the memory occupation and the time required for proving the equivalence of systems. A prototype has been developed to evaluate the approach on several examples of concurrent system specifications

    Symmetry reduction and heuristic search for error detection in model checking

    Get PDF
    The state explosion problem is the main limitation of model checking. Symmetries in the system being verified can be exploited in order to avoid this problem by defining an equivalence (symmetry) relation on the states of the system, which induces a semantically equivalent quotient system of smaller size. On the other hand, heuristic search algorithms can be applied to improve the bug finding capabilities of model checking. Such algorithms use heuristic functions to guide the exploration. Bestfirst is used for accelerating the search, while A* guarantees optimal error trails if combined with admissible estimates. We analyze some aspects of combining both approaches, concentrating on the problem of finding the optimal path to the equivalence class of a given error state. Experimental results evaluate our approach

    Taming Numbers and Durations in the Model Checking Integrated Planning System

    Full text link
    The Model Checking Integrated Planning System (MIPS) is a temporal least commitment heuristic search planner based on a flexible object-oriented workbench architecture. Its design clearly separates explicit and symbolic directed exploration algorithms from the set of on-line and off-line computed estimates and associated data structures. MIPS has shown distinguished performance in the last two international planning competitions. In the last event the description language was extended from pure propositional planning to include numerical state variables, action durations, and plan quality objective functions. Plans were no longer sequences of actions but time-stamped schedules. As a participant of the fully automated track of the competition, MIPS has proven to be a general system; in each track and every benchmark domain it efficiently computed plans of remarkable quality. This article introduces and analyzes the most important algorithmic novelties that were necessary to tackle the new layers of expressiveness in the benchmark problems and to achieve a high level of performance. The extensions include critical path analysis of sequentially generated plans to generate corresponding optimal parallel plans. The linear time algorithm to compute the parallel plan bypasses known NP hardness results for partial ordering by scheduling plans with respect to the set of actions and the imposed precedence relations. The efficiency of this algorithm also allows us to improve the exploration guidance: for each encountered planning state the corresponding approximate sequential plan is scheduled. One major strength of MIPS is its static analysis phase that grounds and simplifies parameterized predicates, functions and operators, that infers knowledge to minimize the state description length, and that detects domain object symmetries. The latter aspect is analyzed in detail. MIPS has been developed to serve as a complete and optimal state space planner, with admissible estimates, exploration engines and branching cuts. In the competition version, however, certain performance compromises had to be made, including floating point arithmetic, weighted heuristic search exploration according to an inadmissible estimate and parameterized optimization

    Weighted Automata Extraction from Recurrent Neural Networks via Regression on State Spaces

    Full text link
    We present a method to extract a weighted finite automaton (WFA) from a recurrent neural network (RNN). Our algorithm is based on the WFA learning algorithm by Balle and Mohri, which is in turn an extension of Angluin's classic \lstar algorithm. Our technical novelty is in the use of \emph{regression} methods for the so-called equivalence queries, thus exploiting the internal state space of an RNN to prioritize counterexample candidates. This way we achieve a quantitative/weighted extension of the recent work by Weiss, Goldberg and Yahav that extracts DFAs. We experimentally evaluate the accuracy, expressivity and efficiency of the extracted WFAs.Comment: AAAI 2020. We are preparing to distribute the implementatio

    Graph Subsumption in Abstract State Space Exploration

    Get PDF
    In this paper we present the extension of an existing method for abstract graph-based state space exploration, called neighbourhood abstraction, with a reduction technique based on subsumption. Basically, one abstract state subsumes another when it covers more concrete states; in such a case, the subsumed state need not be included in the state space, thus giving a reduction. We explain the theory and especially also report on a number of experiments, which show that subsumption indeed drastically reduces both the state space and the resources (time and memory) needed to compute it.Comment: In Proceedings GRAPHITE 2012, arXiv:1210.611
    corecore