4 research outputs found

    Enabling Machine Learning Across Heterogeneous Sensor Networks with Graph Autoencoders

    Full text link
    Machine Learning (ML) has been applied to enable many life-assisting appli-cations, such as abnormality detection and emdergency request for the soli-tary elderly. However, in most cases machine learning algorithms depend on the layout of the target Internet of Things (IoT) sensor network. Hence, to deploy an application across Heterogeneous Sensor Networks (HSNs), i.e. sensor networks with different sensors type or layouts, it is required to repeat the process of data collection and ML algorithm training. In this paper, we introduce a novel framework leveraging deep learning for graphs to enable using the same activity recognition system across HSNs deployed in differ-ent smart homes. Using our framework, we were able to transfer activity classifiers trained with activity labels on a source HSN to a target HSN, reaching about 75% of the baseline accuracy on the target HSN without us-ing target activity labels. Moreover, our model can quickly adapt to unseen sensor layouts, which makes it highly suitable for the gradual deployment of real-world ML-based applications. In addition, we show that our framework is resilient to suboptimal graph representations of HSNs

    Transfer Learning in Human Activity Recognition: A Survey

    Full text link
    Sensor-based human activity recognition (HAR) has been an active research area, owing to its applications in smart environments, assisted living, fitness, healthcare, etc. Recently, deep learning based end-to-end training has resulted in state-of-the-art performance in domains such as computer vision and natural language, where large amounts of annotated data are available. However, large quantities of annotated data are not available for sensor-based HAR. Moreover, the real-world settings on which the HAR is performed differ in terms of sensor modalities, classification tasks, and target users. To address this problem, transfer learning has been employed extensively. In this survey, we focus on these transfer learning methods in the application domains of smart home and wearables-based HAR. In particular, we provide a problem-solution perspective by categorizing and presenting the works in terms of their contributions and the challenges they address. We also present an updated view of the state-of-the-art for both application domains. Based on our analysis of 205 papers, we highlight the gaps in the literature and provide a roadmap for addressing them. This survey provides a reference to the HAR community, by summarizing the existing works and providing a promising research agenda.Comment: 40 pages, 5 figures, 7 table

    人の行動分類のための教師なし転移学習

    Get PDF
    筑波大学 (University of Tsukuba)201
    corecore