4 research outputs found

    Advances in Hyperspectral Image Classification Methods for Vegetation and Agricultural Cropland Studies

    Get PDF
    Hyperspectral data are becoming more widely available via sensors on airborne and unmanned aerial vehicle (UAV) platforms, as well as proximal platforms. While space-based hyperspectral data continue to be limited in availability, multiple spaceborne Earth-observing missions on traditional platforms are scheduled for launch, and companies are experimenting with small satellites for constellations to observe the Earth, as well as for planetary missions. Land cover mapping via classification is one of the most important applications of hyperspectral remote sensing and will increase in significance as time series of imagery are more readily available. However, while the narrow bands of hyperspectral data provide new opportunities for chemistry-based modeling and mapping, challenges remain. Hyperspectral data are high dimensional, and many bands are highly correlated or irrelevant for a given classification problem. For supervised classification methods, the quantity of training data is typically limited relative to the dimension of the input space. The resulting Hughes phenomenon, often referred to as the curse of dimensionality, increases potential for unstable parameter estimates, overfitting, and poor generalization of classifiers. This is particularly problematic for parametric approaches such as Gaussian maximum likelihoodbased classifiers that have been the backbone of pixel-based multispectral classification methods. This issue has motivated investigation of alternatives, including regularization of the class covariance matrices, ensembles of weak classifiers, development of feature selection and extraction methods, adoption of nonparametric classifiers, and exploration of methods to exploit unlabeled samples via semi-supervised and active learning. Data sets are also quite large, motivating computationally efficient algorithms and implementations. This chapter provides an overview of the recent advances in classification methods for mapping vegetation using hyperspectral data. Three data sets that are used in the hyperspectral classification literature (e.g., Botswana Hyperion satellite data and AVIRIS airborne data over both Kennedy Space Center and Indian Pines) are described in Section 3.2 and used to illustrate methods described in the chapter. An additional high-resolution hyperspectral data set acquired by a SpecTIR sensor on an airborne platform over the Indian Pines area is included to exemplify the use of new deep learning approaches, and a multiplatform example of airborne hyperspectral data is provided to demonstrate transfer learning in hyperspectral image classification. Classical approaches for supervised and unsupervised feature selection and extraction are reviewed in Section 3.3. In particular, nonlinearities exhibited in hyperspectral imagery have motivated development of nonlinear feature extraction methods in manifold learning, which are outlined in Section 3.3.1.4. Spatial context is also important in classification of both natural vegetation with complex textural patterns and large agricultural fields with significant local variability within fields. Approaches to exploit spatial features at both the pixel level (e.g., co-occurrencebased texture and extended morphological attribute profiles [EMAPs]) and integration of segmentation approaches (e.g., HSeg) are discussed in this context in Section 3.3.2. Recently, classification methods that leverage nonparametric methods originating in the machine learning community have grown in popularity. An overview of both widely used and newly emerging approaches, including support vector machines (SVMs), Gaussian mixture models, and deep learning based on convolutional neural networks is provided in Section 3.4. Strategies to exploit unlabeled samples, including active learning and metric learning, which combine feature extraction and augmentation of the pool of training samples in an active learning framework, are outlined in Section 3.5. Integration of image segmentation with classification to accommodate spatial coherence typically observed in vegetation is also explored, including as an integrated active learning system. Exploitation of multisensor strategies for augmenting the pool of training samples is investigated via a transfer learning framework in Section 3.5.1.2. Finally, we look to the future, considering opportunities soon to be provided by new paradigms, as hyperspectral sensing is becoming common at multiple scales from ground-based and airborne autonomous vehicles to manned aircraft and space-based platforms

    Latest research trends in gait analysis using wearable sensors and machine learning: a systematic review

    Get PDF
    Gait is the locomotion attained through the movement of limbs and gait analysis examines the patterns (normal/abnormal) depending on the gait cycle. It contributes to the development of various applications in the medical, security, sports, and fitness domains to improve the overall outcome. Among many available technologies, two emerging technologies that play a central role in modern day gait analysis are: A) wearable sensors which provide a convenient, efficient, and inexpensive way to collect data and B) Machine Learning Methods (MLMs) which enable high accuracy gait feature extraction for analysis. Given their prominent roles, this paper presents a review of the latest trends in gait analysis using wearable sensors and Machine Learning (ML). It explores the recent papers along with the publication details and key parameters such as sampling rates, MLMs, wearable sensors, number of sensors, and their locations. Furthermore, the paper provides recommendations for selecting a MLM, wearable sensor and its location for a specific application. Finally, it suggests some future directions for gait analysis and its applications

    Multimodal Learning and Its Application to Mobile Active Authentication

    Get PDF
    Mobile devices are becoming increasingly popular due to their flexibility and convenience in managing personal information such as bank accounts, profiles and passwords. With the increasing use of mobile devices comes the issue of security as the loss of a smartphone would compromise the personal information of the user. Traditional methods for authenticating users on mobile devices are based on passwords or fingerprints. As long as mobile devices remain active, they do not incorporate any mechanisms for verifying if the user originally authenticated is still the user in control of the mobile device. Thus, unauthorized individuals may improperly obtain access to personal information of the user if a password is compromised or if a user does not exercise adequate vigilance after initial authentication on a device. To deal with this problem, active authentication systems have been proposed in which users are continuously monitored after the initial access to the mobile device. Active authentication systems can capture users' data (facial image data, screen touch data, motion data, etc) through sensors (camera, touch screen, accelerometer, etc), extract features from different sensors' data, build classification models and authenticate users via comparing additional sensor data against the models. Mobile active authentication can be viewed as one application of the more general problem, namely, multimodal classification. The idea of multimodal classification is to utilize multiple sources (modalities) measuring the same instance to improve the overall performance compared to using a single source (modality). Multimodal classification also arises in many computer vision tasks such as image classification, RGBD object classification and scene recognition. In this dissertation, we not only present methods and algorithms related to active authentication problems, but also propose multimodal recognition algorithms based on low-rank and joint sparse representations as well as multimodal metric learning algorithm to improve multimodal classification performance. The multimodal learning algorithms proposed in this dissertation make no assumption about the feature type or applications, thus they can be applied to various recognition tasks such as mobile active authentication, image classification and RGBD recognition. First, we study the mobile active authentication problem by exploiting a dataset consisting of 50 users' face captured by the phone's frontal camera and screen touch data sensed by the screen for evaluating active authentication algorithms developed under this research. The dataset is named as UMD Active Authentication (UMDAA) dataset. Details on data preprocessing and feature extraction for touch data and face data are described respectively. Second, we present an approach for active user authentication using screen touch gestures by building linear and kernelized dictionaries based on sparse representations and associated classifiers. Experiments using the screen touch data components of UMDAA dataset as well as two other publicly available screen touch datasets show that the dictionary-based classification method compares favorably to those discussed in the literature. Experiments done using screen touch data collected in three different sessions show a drop in performance when the training and test data come from different sessions. This suggests a need for applying domain adaptation methods to further improve the performance of the classifiers. Third, we propose a domain adaptive sparse representation-based classification method that learns projections of data in a space where the sparsity of data is maintained. We provide an efficient iterative procedure for solving the proposed optimization problem. One of the key features of the proposed method is that it is computationally efficient as learning is done in the lower-dimensional space. Various experiments on UMDAA dataset show that our method is able to capture the meaningful structure of data and can perform significantly better than many competitive domain adaptation algorithms. Fourth, we propose low-rank and joint sparse representations-based multimodal recognition. Our formulations can be viewed as generalized versions of multivariate low-rank and sparse regression, where sparse and low-rank representations across all the modalities are imposed. One of our methods takes into account coupling information within different modalities simultaneously by enforcing the common low-rank and joint sparse representation among each modality's observations. We also modify our formulations by including an occlusion term that is assumed to be sparse. The alternating direction method of multipliers is proposed to efficiently solve the proposed optimization problems. Extensive experiments on UMDAA dataset, WVU multimodal biometrics dataset and Pascal-Sentence image classification dataset show that that our methods provide better recognition performance than other feature-level fusion methods. Finally, we propose a hierarchical multimodal metric learning algorithm for multimodal data in order to improve multimodal classification performance. We design metric for each modality as a product of two matrices: one matrix is modality specific, the other is enforced to be shared by all the modalities. The modality specific projection matrices capture the varying characteristics exhibited by multiple modalities and the common projection matrix establishes the relationship of the distance metrics corresponding to multiple modalities. The learned metrics significantly improves classification accuracy and experimental results of tagged image classification problem as well as various RGBD recognition problems show that the proposed algorithm outperforms existing learning algorithms based on multiple metrics as well as other state-of-the-art approaches tested on these datasets. Furthermore, we make the proposed multimodal metric learning algorithm non-linear by using kernel methods
    corecore