1,412 research outputs found

    Collective states in social systems with interacting learning agents

    Full text link
    We consider a social system of interacting heterogeneous agents with learning abilities, a model close to Random Field Ising Models, where the random field corresponds to the idiosyncratic willingness to pay. Given a fixed price, agents decide repeatedly whether to buy or not a unit of a good, so as to maximize their expected utilities. We show that the equilibrium reached by the system depends on the nature of the information agents use to estimate their expected utilities.Comment: 18 pages, 26 figure

    Agent-Based Models and Human Subject Experiments

    Get PDF
    This paper considers the relationship between agent-based modeling and economic decision-making experiments with human subjects. Both approaches exploit controlled ``laboratory'' conditions as a means of isolating the sources of aggregate phenomena. Research findings from laboratory studies of human subject behavior have inspired studies using artificial agents in ``computational laboratories'' and vice versa. In certain cases, both methods have been used to examine the same phenomenon. The focus of this paper is on the empirical validity of agent-based modeling approaches in terms of explaining data from human subject experiments. We also point out synergies between the two methodologies that have been exploited as well as promising new possibilities.agent-based models, human subject experiments, zero- intelligence agents, learning, evolutionary algorithms

    Bayesian Network Games

    Get PDF
    This thesis builds from the realization that Bayesian Nash equilibria are the natural definition of optimal behavior in a network of distributed autonomous agents. Game equilibria are often behavior models of competing rational agents that take actions that are strategic reactions to the predicted actions of other players. In autonomous systems however, equilibria are used as models of optimal behavior for a different reason: Agents are forced to play strategically against inherent uncertainty. While it may be that agents have conflicting intentions, more often than not, their goals are aligned. However, barring unreasonable accuracy of environmental information and unjustifiable levels of coordination, they still can\u27t be sure of what the actions of other agents will be. Agents have to focus their strategic reasoning on what they believe the information available to other agents is, how they think other agents will respond to this hypothetical information, and choose what they deem to be their best response to these uncertain estimates. If agents model the behavior of each other as equally strategic, the optimal response of the network as a whole is a Bayesian Nash equilibrium. We say that the agents are playing a Bayesian network game when they repeatedly act according to a stage Bayesian Nash equilibrium and receive information from their neighbors in the network. The first part of the thesis is concerned with the development and analysis of algorithms that agents can use to compute their equilibrium actions in a game of incomplete information with repeated interactions over a network. In this regard, the burden of computing a Bayesian Nash equilibrium in repeated games is, in general, overwhelming. This thesis shows that actions are computable in the particular case when the local information that agents receive follows a Gaussian distribution and the game\u27s payoff is represented by a utility function that is quadratic in the actions of all agents and an unknown parameter. This solution comes in the form of the Quadratic Network Game filter that agents can run locally, i.e., without access to all private signals, to compute their equilibrium actions. For the more generic payoff case of Bayesian potential games, i.e., payoffs represented by a potential function that depends on population actions and an unknown state of the world, distributed versions of fictitious play that converge to Nash equilibrium with identical beliefs on the state are derived. This algorithm highlights the fact that in order to determine optimal actions there are two problems that have to be solved: (i) Construction of a belief on the state of the world and the actions of other agents. (ii) Determination of optimal responses to the acquired beliefs. In the case of symmetric and strictly supermodular games, i.e., games with coordination incentives, the thesis also derives qualitative properties of Bayesian network games played in the time limit. In particular, we ask whether agents that play and observe equilibrium actions are able to coordinate on an action and learn about others\u27 behavior from only observing peers\u27 actions. The analysis described here shows that agents eventually coordinate on a consensus action. The second part of this thesis considers the application of the algorithms developed in the first part to the analysis of energy markets. Consumer demand profiles and fluctuating renewable power generation are two main sources of uncertainty in matching demand and supply in an energy market. We propose a model of the electricity market that captures the uncertainties on both, the operator and the user side. The system operator (SO) implements a temporal linear pricing strategy that depends on real-time demand and renewable generation in the considered period combining Real-Time Pricing with Time-of-Use Pricing. The announced pricing strategy sets up a noncooperative game of incomplete information among the users with heterogeneous but correlated consumption preferences. An explicit characterization of the optimal user behavior using the Bayesian Nash equilibrium solution concept is derived. This explicit characterization allows the SO to derive pricing policies that influence demand to serve practical objectives such as minimizing peak-to-average ratio or attaining a desired rate of return. Numerical experiments show that the pricing policies yield close to optimal welfare values while improving these practical objectives. We then analyze the sensitivity of the proposed pricing schemes to user behavior and information exchange models. Selfish, altruistic and welfare maximizing user behavior models are considered. Furthermore, information exchange models in which users only have private information, communicate or receive broadcasted information are considered. For each pair of behavior and information exchange models, rational price anticipating consumption strategy is characterized. In all of the information exchange models, equilibrium actions can be computed using the Quadratic Network Game filter. Further experiments reveal that communication model is beneficial for the expected aggregate payoff while it does not affect the expected net revenue of the system operator. Moreover, additional information to the users reduces the variance of total consumption among runs, increasing the accuracy of demand predictions

    Coordination problems on networks revisited: statics and dynamics

    Full text link
    Simple binary-state coordination models are widely used to study collective socio-economic phenomena such as the spread of innovations or the adoption of products on social networks. The common trait of these systems is the occurrence of large-scale coordination events taking place abruptly, in the form of a cascade process, as a consequence of small perturbations of an apparently stable state. The conditions for the occurrence of cascade instabilities have been largely analysed in the literature, however for the same coordination models no sufficient attention was given to the relation between structural properties of (Nash) equilibria and possible outcomes of dynamical equilibrium selection. Using methods from the statistical physics of disordered systems, the present work investigates both analytically and numerically, the statistical properties of such Nash equilibria on networks, focusing mostly on random graphs. We provide an accurate description of these properties, which is then exploited to shed light on the mechanisms behind the onset of coordination/miscoordination on large networks. This is done studying the most common processes of dynamical equilibrium selection, such as best response, bounded-rational dynamics and learning processes. In particular, we show that well beyond the instability region, full coordination is still globally stochastically stable, however equilibrium selection processes with low stochasticity (e.g. best response) or strong memory effects (e.g. reinforcement learning) can be prevented from achieving full coordination by being trapped into a large (exponentially in number of agents) set of locally stable Nash equilibria at low/medium coordination (inefficient equilibria). These results should be useful to allow a better understanding of general coordination problems on complex networks.Comment: Revtex style, 56 pages, 21 figure
    • 

    corecore