2,441 research outputs found

    Cost-Efficient and Robust On-Demand Video Transcoding Using Heterogeneous Cloud Services

    Full text link
    Video streams usually have to be transcoded to match the characteristics of viewers' devices. Streaming providers have to store numerous transcoded versions of a given video to serve various display devices. Given the fact that viewers' access pattern to video streams follows a long tail distribution, for the video streams with low access rate, we propose to transcode them in an on-demand manner using cloud computing services. The challenge in utilizing cloud services for on-demand video transcoding is to maintain a robust QoS for viewers and cost-efficiency for streaming service providers. To address this challenge, we present the Cloud-based Video Streaming Services (CVS2) architecture. It includes a QoS-aware scheduling that maps transcoding tasks to the VMs by considering the affinity of the transcoding tasks with the allocated heterogeneous VMs. To maintain robustness in the presence of varying streaming requests, the architecture includes a cost-efficient VM Provisioner. This component provides a self- configurable cluster of heterogeneous VMs. The cluster is reconfigured dynamically to maintain the maximum affinity with the arriving workload. Results obtained under diverse workload conditions demonstrate that CVS2 architecture can maintain a robust QoS for viewers while reducing the incurred cost of the streaming service provider up to 85%Comment: IEEE Transactions on Parallel and Distributed System

    Scalable video transcoding for mobile communications

    Get PDF
    Mobile multimedia contents have been introduced in the market and their demand is growing every day due to the increasing number of mobile devices and the possibility to watch them at any moment in any place. These multimedia contents are delivered over different networks that are visualized in mobile terminals with heterogeneous characteristics. To ensure a continuous high quality it is desirable that this multimedia content can be adapted on-the-fly to the transmission constraints and the characteristics of the mobile devices. In general, video contents are compressed to save storage capacity and to reduce the bandwidth required for its transmission. Therefore, if these compressed video streams were compressed using scalable video coding schemes, they would be able to adapt to those heterogeneous networks and a wide range of terminals. Since the majority of the multimedia contents are compressed using H.264/AVC, they cannot benefit from that scalability. This paper proposes a technique to convert an H.264/AVC bitstream without scalability to a scalable bitstream with temporal scalability as part of a scalable video transcoder for mobile communications. The results show that when our technique is applied, the complexity is reduced by 98 % while maintaining coding efficiency

    An H.264/AVC to SVC TemporalTranscoder in baseline profile: digest of technical papers

    Get PDF
    Scalable Video Coding provides temporal, spatial and quality scalability using layers within the encoded bitstream. This feature allows the encoded bitstream to be adapted to different devices and heterogeneous networks. This paper proposes a technique to convert an H.264/AVC bitstream in Baseline profile to a scalable stream which provides temporal scalability. Applying the presented approach, a reduction of 65% of coding complexity is achieved while maintaining the coding efficiency

    Towards Hybrid Cloud-assisted Crowdsourced Live Streaming: Measurement and Analysis

    Full text link
    Crowdsourced Live Streaming (CLS), most notably Twitch.tv, has seen explosive growth in its popularity in the past few years. In such systems, any user can lively broadcast video content of interest to others, e.g., from a game player to many online viewers. To fulfill the demands from both massive and heterogeneous broadcasters and viewers, expensive server clusters have been deployed to provide video ingesting and transcoding services. Despite the existence of highly popular channels, a significant portion of the channels is indeed unpopular. Yet as our measurement shows, these broadcasters are consuming considerable system resources; in particular, 25% (resp. 30%) of bandwidth (resp. computation) resources are used by the broadcasters who do not have any viewers at all. In this paper, we closely examine the challenge of handling unpopular live-broadcasting channels in CLS systems and present a comprehensive solution for service partitioning on hybrid cloud. The trace-driven evaluation shows that our hybrid cloud-assisted design can smartly assign ingesting and transcoding tasks to the elastic cloud virtual machines, providing flexible system deployment cost-effectively

    On the impact of the GOP size in a temporal H.264/AVC-to-SVC transcoder in baseline and main profile

    Get PDF
    Scalable video coding is a recent extension of the advanced video coding H.264/AVC standard developed jointly by ISO/IEC and ITU-T, which allows adapting the bitstream easily by dropping parts of it named layers. This adaptation makes it possible for a single bitstream to meet the requirements for reliable delivery of video to diverse clients over heterogeneous networks using temporal, spatial or quality scalability, combined or separately. Since the scalable video coding design requires scalability to be provided at the encoder side, existing content cannot benefit from it. Efficient techniques for converting contents without scalability to a scalable format are desirable. In this paper, an approach for temporal scalability transcoding from H.264/AVC to scalable video coding in baseline and main profile is presented and the impact of the GOP size is analyzed. Independently of the GOP size chosen, time savings of around 63 % for baseline profile and 60 % for main profile are achieved while maintaining the coding efficiency
    corecore