3 research outputs found

    Offloading Decisions in a Mobile Edge Computing Node with Time and Energy Constraints

    Get PDF
    This article describes a simulated annealing based offloading decision with processing time, energy consumption and resource constraints in a Mobile Edge Computing Node. Edge computing mostly deals with mobile devices subject to constraints. Especially because of their limited processing capacity and the availability of their battery, these devices have to offload some of their heavy tasks, which require a lot of calculations. We consider a single mobile device with a list of heavy tasks that can be offloadable. The formulated optimization problem takes into account both the dedicated energy capacity and the total execution time. We proposed a heuristic solution schema. To evaluate our solution, we performed a set of simulation experiments. The results obtained in terms of processing time and energy consumption are very encouraging

    Statistical mechanics of competitive resource allocation using agent-based models

    Get PDF
    Demand outstrips available resources in most situations, which gives rise to competition, interaction and learning. In this article, we review a broad spectrum of multi-agent models of competition (El Farol Bar problem, Minority Game, Kolkata Paise Restaurant problem, Stable marriage problem, Parking space problem and others) and the methods used to understand them analytically. We emphasize the power of concepts and tools from statistical mechanics to understand and explain fully collective phenomena such as phase transitions and long memory, and the mapping between agent heterogeneity and physical disorder. As these methods can be applied to any large-scale model of competitive resource allocation made up of heterogeneous adaptive agent with non-linear interaction, they provide a prospective unifying paradigm for many scientific disciplines
    corecore