629,217 research outputs found
INTEGRATION PROCESSES QUALITY IN HETEROGENOUS ENVIRONMENTS
It presents heterogeneous distributed software applications concept. It describes integration techniques. It defines quality of integration processes regarding heterogeneous environments. It defines quality metrics for heterogeneous e-commerce applications.integration, distributed environments, software process
Multidimensional integration in a heterogeneous network environment
We consider several issues related to the multidimensional integration using
a network of heterogeneous computers. Based on these considerations, we develop
a new general purpose scheme which can significantly reduce the time needed for
evaluation of integrals with CPU intensive integrands. This scheme is a
parallel version of the well-known adaptive Monte Carlo method (the VEGAS
algorithm), and is incorporated into a new integration package which uses the
standard set of message-passing routines in the PVM software system.Comment: 19 pages, latex, 5 postscript figures include
Intersection schemas as a dataspace integration technique
This paper introduces the concept of Intersection Schemas in the field of heterogeneous data integration and dataspaces. We introduce a technique for incrementally integrating heterogeneous data sources by specifying semantic overlaps between sets of extensional schemas using bidirectional schema transformations, and automatically combining them into a global schema at each iteration of the integration process. We propose an incremental data integration methodology that uses this technique and that aims to reduce the amount of up-front effort required. Such approaches to data integration are often described as pay-as-you-go. A demonstrator of our technique is described, which utilizes a new graphical user tool implemented using the AutoMed
heterogeneous data integration system. A case study is also described, and our technique and integration methodology
are compared with a classical data integration strategy
Heterogeneous component interactions: Sensors integration into multimedia applications
Resource-constrained embedded and mobile devices are becoming increasingly
common. Since few years, some mobile and ubiquitous devices such as wireless
sensor, able to be aware of their physical environment, appeared. Such devices
enable proposing applications which adapt to user's need according the context
evolution. It implies the collaboration of sensors and software components
which differ on their nature and their communication mechanisms. This paper
proposes a unified component model in order to easily design applications based
on software components and sensors without taking care of their nature. Then it
presents a state of the art of communication problems linked to heterogeneous
components and proposes an interaction mechanism which ensures information
exchanges between wireless sensors and software components
Technologies for 3D Heterogeneous Integration
3D-Integration is a promising technology towards higher interconnect
densities and shorter wiring lengths between multiple chip stacks, thus
achieving a very high performance level combined with low power consumption.
This technology also offers the possibility to build up systems with high
complexity just by combining devices of different technologies. For ultra thin
silicon is the base of this integration technology, the fundamental processing
steps will be described, as well as appropriate handling concepts. Three main
concepts for 3D integration have been developed at IZM. The approach with the
greatest flexibility called Inter Chip Via - Solid Liquid Interdiffusion
(ICV-SLID) is introduced. This is a chip-to-wafer stacking technology which
combines the advantages of the Inter Chip Via (ICV) process and the
solid-liquid-interdiffusion technique (SLID) of copper and tin. The fully
modular ICV-SLID concept allows the formation of multiple device stacks. A test
chip was designed and the total process sequence of the ICV-SLID technology for
the realization of a three-layer chip-to-wafer stack was demonstrated. The
proposed wafer-level 3D integration concept has the potential for low cost
fabrication of multi-layer high-performance 3D-SoCs and is well suited as a
replacement for embedded technologies based on monolithic integration. To
address yield issues a wafer-level chip-scale handling is presented as well, to
select known-good dies and work on them with wafer-level process sequences
before joining them to integrated stacks.Comment: Submitted on behalf of EDA Publishing Association
(http://irevues.inist.fr/handle/2042/16838
Laser sources on a heterogeneous III-V/silicon platform
The heterogeneous integration of III-V semiconductor lasers on a silicon waveguide platform using DVS-BCB adhesive bonding is reviewed. Both mW-level lasers and ultra-compact laser sources are discussed
Model-driven performance evaluation for service engineering
Service engineering and service-oriented architecture as an
integration and platform technology is a recent approach to software systems integration. Software quality aspects such as performance are of central importance for the integration of heterogeneous, distributed service-based systems. Empirical performance evaluation is a process of
measuring and calculating performance metrics of the implemented software. We present an approach for the empirical, model-based performance evaluation of services and service compositions in the context of model-driven service engineering. Temporal databases theory is utilised
for the empirical performance evaluation of model-driven developed service systems
Integrating heterogeneous distributed COTS discrete-event simulation packages: An emerging standards-based approach
This paper reports on the progress made toward the emergence of standards to support the integration of heterogeneous discrete-event simulations (DESs) created in specialist support tools called commercial-off-the-shelf (COTS) discrete-event simulation packages (CSPs). The general standard for heterogeneous integration in this area has been developed from research in distributed simulation and is the IEEE 1516 standard The High Level Architecture (HLA). However, the specific needs of heterogeneous CSP integration require that the HLA is augmented by additional complementary standards. These are the suite of CSP interoperability (CSPI) standards being developed under the Simulation Interoperability Standards Organization (SISO-http://www.sisostds.org) by the CSPI Product Development Group (CSPI-PDG). The suite consists of several interoperability reference models (IRMs) that outline different integration needs of CSPI, interoperability frameworks (IFs) that define the HLA-based solution to each IRM, appropriate data exchange representations to specify the data exchanged in an IF, and benchmarks termed CSP emulators (CSPEs). This paper contributes to the development of the Type I IF that is intended to represent the HLA-based solution to the problem outlined by the Type I IRM (asynchronous entity passing) by developing the entity transfer specification (ETS) data exchange representation. The use of the ETS in an illustrative case study implemented using a prototype CSPE is shown. This case study also allows us to highlight the importance of event granularity and lookahead in the performance and development of the Type I IF, and to discuss possible methods to automate the capture of appropriate values of lookahead
Understanding as integration of heterogeneous representations
The search for understanding is a major aim of science. Traditionally, understanding has been undervalued in the philosophy of science because of its psychological underpinnings; nowadays, however, it is widely recognized that epistemology cannot be divorced from psychology as sharp as traditional epistemology required. This eliminates the main obstacle to give scientific understanding due attention in philosophy of science. My aim in this paper is to describe an account of scientific understanding as an emergent feature of our mastering of different (causal) explanatory frameworks that takes place through the mastering of scientific practices. Different practices lead to different kinds of representations. Such representations are often heterogeneous. The integration of such representations constitute understanding
- …
