
Intersection Schemas as a Dataspace Integration
Technique

Richard Brownlow
Department of Computer Science

Birkbeck, University of London
London, UK

richard@dcs.bbk.ac.uk

Alex Poulovassilis
Department of Computer Science

Birkbeck, University of London
London, UK

ap@dcs.bbk.ac.uk

ABSTRACT
This paper introduces the concept of Intersection Schemas
in the field of heterogeneous data integration and datas-
paces. We introduce a technique for incrementally integrat-
ing heterogeneous data sources by specifying semantic over-
laps between sets of extensional schemas using bidirectional
schema transformations, and automatically combining them
into a global schema at each iteration of the integration pro-
cess. We propose an incremental data integration method-
ology that uses this technique and that aims to reduce the
amount of up-front effort required. Such approaches to data
integration are often described as pay-as-you-go. A demon-
strator of our technique is described, which utilizes a new
graphical user tool implemented using the AutoMed het-
erogeneous data integration system. A case study is also
described, and our technique and integration methodology
are compared with a classical data integration strategy.

Keywords
Dataspaces, Pay-as-you-go, Data Integration, Bidirectional
Schema Transformations

1. INTRODUCTION
Data integration is the process of taking data from sev-
eral different data sources and bringing them together in
a structured manner such that Data Services can be sup-
ported over the integrated resource. These data services
could be Data Mining tools, search engines or simple query-
ing tools. The data sources can be varied in type, for ex-
ample relational databases, XML data, or web pages. The
data sources might be located at different sites of a net-
work, and each data source may be running different data
management software. The overarching challenge in data
integration is to design frameworks and methodologies that
allow heterogeneous data sources to be accessed as a single
integrated resource by data services.

Traditional data integration approaches [5] require all the
mappings between the different data sources to be deter-
mined up-front, prior to being able to run any data services

(c) 2014, Copyright is with the authors. Published in Proc. 17th Inter-
national Conference on Extending Database Technology (EDBT), March
24-28, 2014, Athens, Greece: ISBN 978-3-89318065-3, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0.

on the integrated resource. In order to establish the map-
pings, it is likely a data integration project will require a
certain level of domain expertise. This approach to data
integration means that the full cost of the integration must
be committed up front. In order to do this accurately, the
timescales for producing the mappings must be accurately
estimated. As a result, data integration projects are often
costly and risky undertakings [9].

An active area of research [8, 9] is how to reduce the amount
of up front effort required in data integration. One ap-
proach is to develop a framework that presents all the data
in a Common Data Model, but in an unintegrated format.
Tools are then provided to allow the data integrator to in-
crementally identify the semantic relationships between the
different data sources. The concept of a dataspace allows
semantic integration of data to be undertaken incrementally
[7]. Such an approach is often described as pay-as-you-go,
since integration can proceed as resources (and budgets) al-
low. Data services can then be provided at each iteration,
rather than waiting for all the integration to be completed
up-front.

A theoretical discussion of data integration is presented in
[12]. This includes a discussion of global-as-view (GAV)
and local-as-view (LAV) approaches, along with a discus-
sion of query processing in data integration settings. The
data integration setting is formally defined in terms source
schemas, global schemas and mappings between source and
global schemas.

The data integration process can be considered as compris-
ing three subprocesses. Firstly, schema matching and map-
ping, which includes the identification of correspondences
between different schema objects and the definition of map-
pings between schemas. The work in [17] provides an over-
view of the schema matching process, while [3, 1, 4] discuss
different approaches to schema mapping. Secondly, schema
merging — the creation of an integrated schema based on
the schema mappings. Thirdly, schema improvement which
increases the quality of the integrated schema, for exam-
ple by removing redundant information. The work in [2]
discusses the schema improvement and refinement process.
An incremental (or pay-as-you-go) data integration process
results in an incomplete integration after each iteration of
these three subprocesses.

Data integrators tend to fall into two groups [9]. The first

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/20664586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

group are domain experts who are knowledgable in the appli-
cation domain(s) of the data sources being integrated (often
with limited data integration experience). The second group
are data integration experts who are familiar with data in-
tegration environments (but are likely to have limited expe-
rience in the target application domain for a particular data
integration project). These two groups of integrators must
work closely together. It is therefore important to develop
tools which can be used by both of these types of data inte-
grators, to increase their productivity in the data integration
environment, while still allowing maximum flexibility in the
types of semantic mappings that can be supported.

This paper proposes a new technique for reducing the amount
of up front effort required in data integration, utilizing bidi-
rectional schema transformations. The focus of our research
is developing light–weight techniques for creating mappings
between data sources and in developing new data integration
frameworks and methodologies that use such techniques. By
light–weight techniques we mean techniques that can be used
for rapid, incremental dataspace integration. In Section 2 of
the paper we present in detail our approach. We present an
overview of the AutoMed system in Section 2.1, our new in-
tersection schema methodology in Section 2.2, a description
of the methodology integration workflow in Section 2.3 and
a worked example in Section 2.4. In Section 3 we present
a case study contrasting our approach with a classical data
integration approach in the context of a large-scale data in-
tegration project in the field of proteomics. We give our
concluding remarks and directions of further work in Sec-
tion 4.

2. OUR APPROACH
2.1 Overview of AutoMed
AutoMed1 is a schema transformation and integration sys-
tem that provides a low-level hypergraph-based data model
(the HDM) as a common data model for representing hetero-
geneous data sources. Higher level modelling languages (e.g.
relational, XML, RDF/S, OWL) can be defined in terms of
the HDM using the API of AutoMed’s Model Definitions
Repository (MDR) [6].

For any modelling language M specified in terms of the
HDM, AutoMed provides a set of primitive schema transfor-
mations that can be applied to schema constructs expressed
in M . In particular, there is an add and a delete primi-
tive transformation for adding/deleting any construct of M
to/from a schema. For those constructs of M which have
textual names, there is also a rename primitive transforma-
tion. Each add or delete transformation is accompanied by a
query which defines the extent of the new or deleted schema
object in terms of the rest of the objects in the schema (i.e.
this query specifies a view definition). This query is ex-
pressed in IQL, a functional query language developed for
the AutoMed system [10]. Also available are extend and
contract primitive transformations which behave in the same
way as add and delete except that they state that the extent
of the new/deleted schema object cannot be precisely de-
rived from the other schema objects. Each extend and con-
tract transformation takes a query of the form Range ql qu
where the subqueries ql and qu specify a lower and an upper

1http://www.doc.ic.ac.uk/automed

bound on the extent of the new/deleted schema object. The
lower bound may be the constant Void, equivalent to the
empty collection, and the upper bound may be the constant
Any, equivalent to the largest possible collection of the type
of the schema object.

Schemas and their associated instances can be incrementally
transformed by applying to them a sequence of primitive
transformations. A sequence of primitive transformations
transforming a schema S1 to a schema S2 is termed a path-
way from S1 to S2 and denoted by S1 → S2. All source,
intermediate and integrated schemas, and the pathways be-
tween them, are stored in AutoMed’s Schemas & Transfor-
mations Repository (STR) [6].

In addition to the five primitive schema transformations al-
ready mentioned, AutoMed also supports an ident primitive.
This operates at the level of entire schemas allows the inte-
grator to assert that two syntactically identical schemas, S
and S′, should be connected by a pathway. The AutoMed
system automatically translates such an ident transforma-
tion into a sequence of id transformations from S to S′, of
the form id(S : c, S′ : c) for each schema object c appear-
ing in S and S′ (where S : c denotes object c appearing in
schema S).

A key property of AutoMed’s pathways is that they are au-
tomatically reversible, in that from a pathway S1 → S2 we
can automatically derive a pathway S2 → S1 by reversing
the order of the transformations and replacing each add by a
delete with the same arguments, and vice versa; each extend
by a contract with the same arguments, and vice versa; and
each rename or id by a rename or id with the arguments
reversed.

Schema integration using AutoMed typically proceeds by
forming union-compatible schemas, as illustrated in Figure
1. Firstly, the appropriate AutoMed Wrapper for each data
source is used to extract metadata from the data sources
and to produce a set of data source schemas, DS1, . . . , DSn,
stored within the AutoMed repository. In order to integrate
these, each DSi is first transformed into a union-compatible
schema USi. The n schemas US1, ..., USn are identical, and
this is verified by injecting an ident transformation between
each pair USi and USi+1. An arbitrary one of the USi can
then be selected by the user for further improvement and
refinement into the global schema. In terms of the data ex-
tents of the objects in the global schema, AutoMed provides
a number of options for deriving these from the extents of
objects in the union–compatible schemas, e.g. bag union, set
union, choice, intersection. The first of these is the default,
and it is what we assume in this paper.

There may be information within a USi which is not se-
mantically derivable from the corresponding DSi. This is
indicated by extend transformation steps within the path-
way DSi → USi. Conversely, not all of the information
within a data source schema DSi need be transferred into
USi and this is indicated by contract transformation steps
occurring within DSi → USi.

The queries accompanying the primitive transformations are
used by AutoMed’s Query Processor [10] in order to refor-

Figure 1: Data Integration via Union-Compatible
Schemas

mulate users’ queries expressed on a global schema to queries
expressed on the source schemas. Query reformulation may
be by means of query unfolding for GAV query processing,
or by rewriting queries using views for LAV query process-
ing [12], or by a combination of both GAV and LAV query
processing techniques [15]. In [14], AutoMed’s transforma-
tion approach was termed Both-As-View (BAV) since the
add/extend steps in a pathway correspond to GAV mappings
and the delete/contract steps to LAV mappings. However,
BAV transformations capture a finer level of data integra-
tion granularity than do conventional GAV or LAV map-
pings, since BAV transformations are stated on the irre-
ducible modelling constructs of a modelling language M (as
determined by the definition of the language M in terms of
the HDM), e.g. on individual columns of relational tables
as opposed to on whole tables. It is also possible to express
global-local-as-view (GLAV) mappings using BAV transfor-
mations [11].

A typical data integration workflow using the AutoMed sys-
tem proceeds as follows: Firstly, each data source is wrapped
to produce a data source schema. Secondly, the schema
matching and mapping process is undertaken, with the help
of AutoMed’s Schema Matching tool [16] and the knowledge
of domain experts. Each data source schema is transformed
to a union-compatible schema via a series of primitive trans-
formations. Thirdly, the union-compatible schemas are au-
tomatically merged by injecting ident transformations be-
tween them. Finally, one of these schemas is chosen as the
source for further transformation, capturing any necessary
improvements and refinements into the final global schema.

2.2 Intersection Schemas
We now propose a new methodology for lightweight data
integration in an incremental pay-as-you-go environment,
based on the concept of Intersection Schemas. The primary
goal of this approach is to improve on existing data integra-
tion methodologies by increasing data integrators’ produc-
tivity in the overall Data Integration process.

We demonstrate a lightweight technique that allows a do-
main expert to identify schema mappings that represent se-
mantic intersections between different data source schemas.
Using our technique, both the schema matching/mapping

Figure 2: Intersection Schema

and the schema merging processes are undertaken itera-
tively.

Three types of schema are encompassed within our method-
ology:

Extensional Schema: This is any schema in the AutoMed
repository that is connected to a data source schema via a
pathway.

Federated Schema: This is a combination of multiple schemas
(of any kind), S1, ..., Sn, into a single virtual schema F con-
taining a union of the objects in S1, ..., Sn, without under-
taking any schema or data transformation or integration.
Within F , the schema objects from each Si are prefixed
with the schema identifier of Si so as to (i) be able to easily
distinguish their provenance and (ii) disambiguate objects
of the same name from different schemas. We write:

F = S1 ∪ S2 ∪ ... ∪ Sn

Intersection Schema: This is a schema which contains only
semantically overlapping content from a pair of extensional
schemas ES1 and ES2 (see Figure 2). In more detail, there
need to exist in the AutoMed repository two pathways ES1

→ ES′
1 and ES2 → ES′

2 with ES′
1 and ES′

2 being union-
compatible schemas, and each pathway consisting of a se-
quence of add and delete operations followed by a sequence
of contract operations. Specifically, the pathway ES1 →
ES′

1 will be of the form:

add(o1, f1(ES1)), add(o2, f2(ES1)), ... , add(or, fr(ES1)),
del(c1, g1(ES′

1)), del(c2, g2(ES′
1)), ..., del(cm, gm(ES′

1)),
contract(cm+1, Range V oid Any),
contract(cm+2, Range V oid Any),
contract(cn, Range V oid Any)

where the ci are schema objects of ES1, the oi are schema
objects of ES′

1, the fi are IQL queries over ES1 and the gi
are IQL queries over ES′

1 (the pathway ES2 → ES′
2 has a

similar form). The part of this pathway comprising the add
and delete steps asserts the semantic equivalence of the set of
schema objects o1, ...or of ES′

1 and the set of objects c1...cm
of ES1. There is also a pathway ES′

1 → ES′
2 comprising a

single ident operation.

The schemas ES′
1 and ES′

2 can both be regarded as intersec-
tion schemas, and one of them can be explicitly renamed to
reflect the fact that it is specifically chosen to be the inter-
section schema, I. As noted in Section 2.1, the data extents
of the objects in schema I are formed from a bag-union of

Figure 3: Integrated Intersection and Extensional
Schemas

Figure 4: Global schema derived from Intersection
and Extensional Schemas

the objects in schemas ES′
1 and ES′

2 from which they are
derived.

In our approach a federated schema can be created from a set
of extensional schemas ES1, ..., ESn and a set of intersection
schemas I1, ..., Im (see Figure 3):

F = ES1 ∪ ... ∪ ESn ∪ I1 ∪ ... ∪ Im

If the intersection schemas I1, ..., Im have been derived from
a subset of the extensional schemas ES1, ..., ESn then it is
possible to automatically determine objects that are now
semantically redundant in F and our implemented tool (see
Section 2.3 below) offers this as an option. For example, in
Figure 4, the intersection schema I has been derived from
the extensional schemas ES1and ES2, and the global schema
G is defined as:

G = I ∪ (ES1 − I) ∪ (ES2 − I) ∪ ES3...... ∪ ESn

The − operator here removes from the schema that is its first
argument the subset of objects that are semantically equiv-

alent with some subset of the objects in the schema that is
its second argument. Operationally, given two extensional
schemas ES1 and ES2 and an intersection schema I derived
from them as described earlier, the schema ES1 − I is ob-
tained from ES1 by retaining only those schema objects of
ES1 which have been removed in the pathway ES1 → I by
a contract operation; likewise for the schema ES2 − I. In
more detail, if the pathway ES1 → I is of the following form
(possibly with a sequence of ident transformations added at
the end as well):

add(o1, f1(ES1)), add(o2, f2(ES1)), ..., add(or, fr(ES1)),
del(c1, g1(I)), del(c2, g2(I)), ..., del(cm, gm(I)),
contract(cm+1, Range V oid Any),
contract(cm+2, Range V oid Any),
contract(cn, Range V oid Any)

where the ci are schema objects of ES1, the oi are schema
objects of I, the fi are IQL queries over ES1 and the gi are
IQL queries over I, then the pathway ES1 → ES1 − I is
automatically derived to be:

contract(c1, Range V oid Any), ..., contract(cm, Range V oid
Any)

2.3 Integration Workflow
Our techniques for creating federated, intersection and global
schemas have been described in the previous subsection.
These techniques now need to be incorporated into an over-
all workflow through which the global schema is produced
iteratively. We describe the workflow below. Before doing
so, we briefly describe the Intersection Schema Tool that has
been developed to support this workflow. This tool firstly
creates a single federated schema from a set of extensional
schemas — this also serves as the first version of the global
schema. The tool then allows a data integrator to incremen-
tally identify semantic intersections between pairs of exten-
sional schemas, and create a schema representing their in-
tersection. Each intersection schema can be integrated with
the current global schema using the tool, producing a new
global schema.

The steps of the workflow proceed as follows:

1. Identify the extensional schemas representing the set
of data sources that are to be integrated.

2. Initially a federated schema is created from the schemas
identified in Step 1. Data Services can immediately be
supported by this schema e.g. AutoMed’s Query Tool
[13].

3. Inspect the schemas identified in Step 1 and select two
of them from which to derive an intersection schema.

4. Identify mappings between these two schemas and the
intersection schema. For each Intersection Schema,
a mappings table is maintained by the Intersection
Schema Tool, which shows the IQL query correspon-
dences between objects in the Intersection Schema and
the current global schema. The Intersection Schema
tool allows mappings to be added and edited by the
data integrator. Other existing tools supported by Au-
toMed can be used to assist with this, for example the

Extent Tool which allows the extent of any schema
object to be displayed [13] and the Schema Matching
Tool [16] which aims to provide suggestions for schema
mappings.

5. When all the mappings have been identified for this
cycle of the workflow, the user can ask for an intersec-
tion schema to be generated. A new Global Schema
is created automatically from the Intersection Schema
and the extensional schemas by our tool, as described
in Section 2.3. The user may optionally elect for any
redundant objects in the new Global schema to be
dropped.

6. The user may test the Intersection schema or Global
schema at this stage by running queries on it using the
AutoMed Query Tool and verifying that the results are
as expected.

The data integrator can now proceed from Step 3 again,
identify another pair of extensional schemas from which to
create a new intersection schema, test this schema, generate
a new global schema and, optionally, ask for any redundant
objects to be removed from it. Any number of intersections
between any pair of extensional schemas. ESi and ESj can
be created at each iteration of the process.

2.4 Example
A large-scale data integration project that used AutoMed
within a traditional data integration process was the iSpi-
der project, which integrated data from several specialist
Proteomics relational databases under a single virtual re-
lational schema [19, 20]. In the iSpider project, all of the
integration work was done “up front”, before any data ser-
vices were deployed and the integration took several person
months to accomplish.

Two of the source databases used in iSpider were Pedro2

and PepSeeker3 and we now illustrate how our intersection-
schema based tools and methodology can be used to (par-
tially) integrate them. We were able to do this by examining
the set of schema transformations generated for the original
iSpider project by the domain experts and data integrators
working on that project. These are listed in Appendix E of
[18].

An initial Federated schema is first generated, prior to the
creation of any Intersection schemas. Upon inspection of
the Pedro and Pepseeker fragments of this federated schema,
the user identifies that � proteinhit, db search� from Pe-
dro and � proteinhit, fileparameters � from PepSeeker
are semantically equivalent concepts and should be repre-
sented by a new concept � UProteinHit, dbsearch � in
an intersection schema between them4. The user creates an

2http://pedro.man.ac.uk/
3http://nwsr.smith.man.ac.uk/pepseeker
4AutoMed gives considerable flexibility for configuring how
a construct m of a modelling language M is represented
in the HDM, in general identifying the construct using a
scheme of the form � M,m, s1, ..., sn � where the si are
either literals, or schemes representing other constructs. In
this paper, we consider that AutoMed is configured to use a
scheme of the form� sql, table, t� to represent an SQL ta-

intersection schema in the tool as illustrated in Figure 5.
The left hand panel of the tool shows the source schemas
for Pedro and PepSeeker and allows the user to select ob-
jects from each source schema. The bottom panel shows the
transformation queries for each subset of objects selected,
and the name of the new Global schema object. If only a
single object is selected from a source schema then, by de-
fault, the tool automatically creates a tranformation query
consisting of just that object; the user is free to edit this
query. The current Global schema is shown in the right hand
panel. Once all the transformation queries in the “forwards”
direction have been specified, a similar screen is presented
to the user in order to specify the transformation queries in
the reverse direction. This time, the top panel shows the
newly defined Global schema objects on the left hand side
and the source schemas on the right. Suggested transfor-
mation queries are presented in the bottom panel. Where
possible, these queries are automatically generated by the
tool from the user-specified queries in the forwards direc-
tion; for more complex transformations, the default query
Range Void Any is used, which the user may edit. In this
particular example, both the forwards and the reverse trans-
formation queries consist of the same schema object. Once
the user is satisfied with the new Global schema objects and
the transformation queries, the user then requests the cre-
ation of the intersection schema.

The Intersection Schema is then automatically integrated
with the original federated schema to create a new Global
schema. If the user requests this, the schema objects �
proteinhit, db search� from Pedro and � proteinhit,
fileparameters� from PepSeeker can be dropped from the
resulting federated schema, since their extents are included
in the extent of � UProteinHit, dbsearch � in the Inter-
section Schema. Queries can now be run by the user over
the resulting schema to verify the data integration, and in
particular to check that the extent of � UProteinHit,
dbsearch� is as expected.

3. CASE STUDY
We have re-examined the iSpider documentation and the
original set of schema transformations that were produced
by that project in order to see how our intersection-schema
based approach could have been used in the context of a
large-scale real-world data integration project to undertake
an incremental, pay-as-you-go integration that would have
allowed query services to be supported in a gradual fashion.
In addition to Pedro and PepSeeker, a third database that
had been integrated with them in the iSpider project was
gpmDB5.

The original iSpider project domain experts had identified
a set of queries of high priority that the integrated resource
should be able to answer (see Chapter 7 of [18]). Despite

ble named t, and a scheme of the form� sql, column, t, c�
to represent a column c of an SQL table t. Where the con-
text of using a scheme would not cause ambiguity, the user
may omit the modelling language M or the construct type
m from the scheme, or both. Thus, in the context of the
examples in this paper, where only relational tables are be-
ing considered, we refer to a table by a scheme of the form
� t�, and to a column of a table by a scheme of the form
� t, c�.
5http://www.thegpm.org/

Figure 5: Intersection Schema Tool - identifying
mappings

this fact, the iSpider project team elected to undertake a
complete “up-front” integration of the data sources rather
than using the set of queries to prioritise their integration
effort.

We have used this set of queries in order to undertake an
intersection schema-based integration, using the priority or-
dering of the queries to drive each iteration of the process.
The set of queries are as follows, with higher priority queries
being listed before lower priority ones:

1. Retrieve all protein identifications for a given protein
accession number

2. Retrieve all protein identifications for a given group of
proteins

3. Retrieve all protein identifications for a given organism

4. Retrieve all protein identifications given a certain pep-
tide and their related amino acid information

5. Retrieve all identifications of a given protein given a
certain peptide

6. Retrieve all peptide-related information for a given
protein identification

7. Retrieve all ion related information

To answer query 1, we need to integrate � protein,
accession num � from Pedro, � proseq, label � from gp-
mDB and � protein � from PepSeeker, to create an en-
tity� UProtein, accession num� in the first intersection
schema. These integrations are achieved by the following
6 transformations defined by the user in the Intersection
Schema tool6 (as well additional transformations automati-
cally created by the tool7):

6The general syntax of the IQL queries within these add
transformations is that of a comprehension [...|...] in which
the expressions on the right hand side of the | are iterators
and filters over one or more collections, and the expression
on the left hand side of the | constructs a new collection.
7The additional contract transformations are automatically

Table 1: Case Study Queries

add� UProtein� [{′PEDRO′, k} | k ←� protein�]
add� UProtein� [{′gpmDB′, k} |

k ←� proseq �]
add� UProtein� [{′pepSeeker′, x} |
{k, x} ←� proteinhit, ProteinID �]

add� UProtein, accession num� [{′PEDRO′, k, x} |
{k, x} ←� protein, accession num�]

add� UProtein, accession num� [{′gpmDB′, k, x} |
{k, x} ←� proseq, label�]

add� UProtein, accession num� [{′pepSeeker′, k, x} |
k ←� uprotein�]

To answer query 2, we need additionally to create an at-
tribute � UProtein, description� from � protein,
description � in Pedro. This is achieved by the following
transformation defined by the user8:

add� UProtein, description� [{′PEDRO′, k, x} |
{k, x} ←� protein, description�]

To answer query 3, we need additionally to create an at-
tribute � UProtein, organism� from � protein,
organism � in Pedro. This is achieved by the following
transformation defined by the user:

add� UProtein, organism� [{′PEDRO′, k, x} |
{k, x} ←� protein, organism�]

To answer query 4, we additionally need to integrate the
following:

generated. Where possible, the delete transformations in
the pathway from a data source schema to an intersec-
tion schema are also automatically generated from the user-
specified add transformations to complete the bidirectional
pathway. For more complex transformations, the user’s in-
put is needed to specify the delete transformations.
8Note, this is a refinement of the intersection schema-
based methodology described in Section 2.3 — our Intersec-
tion Schema tool allows ad-hoc transformations of a single
schema as well, as part of the iterative integration process.

• � proteinhit, protein� from Pedro, � protein,
proseqid� from gpmDB and � proteinhit,
proteinid � from PepSeeker to create an attribute
� UProteinHit, protein�;

• � peptidehit � from Pedro, � peptide � from gp-
mDB and � peptidehit � from PepSeeker to create
an entity � UPeptideHit�;

• � peptidehit, sequence� from Pedro, � peptide,
seq � from gpmDB and� peptidehit, pepseq � from
PepSeeker to, create an attribute � UPeptideHit,
sequence�;

• � peptidehit, score� from Pedro and � peptidehit,
score� from PepSeeker to create attribute
� UPeptideHit, score�;

• � proteinhit, db search� from Pedro and
� proteinhit, fileparameters � from PepSeeker to
create an attribute � UProteinHit, dbsearch�.

We also create an attribute � UPepT ideHit, dbsearch �
from � peptidehit, db search � in Pedro, and an entity
� UPeptideHitToProteinHit mm � from the join of �
UPeptideHit, dbsearch� and � UProteinHit,
dbsearch � already in the global schema. This is achieved
by the following 15 transformations defined by the user:

add� UProteinHit, protein� [{′PEDRO′, k, x} |
{k, x} ←� proteinhit, protein�]

add� UProteinHit, protein� [{′gpmDB′, k, x} |
{k, x} ←� protein, proseqid�]

add� UProteinHit, protein� [{′pepSeeker′, k, x} |
{k, x} ←� proteinhit, proteinid�]

add� UPeptideHit� [{′PEDRO′, k} |
k ←� peptidehit�]

add� UPeptideHit� [{′gpmDB′, k} | k ←� peptide�]
add� UPeptideHit� [{′pepSeeker′, k} |

k ←� peptidehit�]
add� UPeptideHit, sequence� [{′PEDRO′, k, x} |
{k, x} ←� peptidehit, sequence�]

add� UPeptideHit, sequence� [{′gpmDB′, k, x} |
{k, x} ←� peptide, seq �]

add� UPeptideHit, sequence� [{′pepSeeker′, k, x} |
{k, x} ←� peptidehit, pepseq �]

add� UPeptideHit, score� [{′PEDRO′, k, x} |
{k, x} ←� peptidehit, score >]

add� UPeptideHit, score� [{′pepSeeker′, k, x} |
{k, x} ←� peptidehit, score�]

add� UProteinHit, dbsearch� [{′PEDRO′, k, x} |
{k, x} ←� proteinhit, db search�]

add� UProteinHit, dbsearch� [{′pepSeeker′, k, x} |
{k, x} ←� proteinhit, fileparameters�]

add� UPeptideHit, dbsearch� [{′PEDRO′, k, x} |
{k, x} ←� peptidehit, db search�]

add� uPeptideHitToProteinHitmm� [{k1, k2} |
{k1, x} ←� upeptidehit, dbsearch�;
{k2, y} ←� uproteinhit, dbsearch�;x = y]

To answer query 5, no further concepts need to be inte-
grated. To answer query 6, we need to integrate
� peptidehit, probability � from Pedro, � peptide,
expect � from gpmDB and � peptidehit, expect � from

PepSeeker to create the attribute � UPeptideHit,
probability � in the next intersection schema. This is ach-
ieved by the following 3 transformations defined by the user:

add� UPeptideHit, probability � [{′PEDRO′, k, x} |
{k, x} ←� peptidehit, probability �]

add� UPeptideHit, probability � [{′gpmDB′, k, x} |
{k, x} ←� peptide, expect�]

add� UPeptideHit, probability � [{′pepSeeker′, k, x} |
{k, x} ←� peptidehit, expect�]

Finally, to answer query 7, no further concepts need to be
integrated. For completeness, we list in Table 1 examples of
the 7 queries (expressed in IQL) formulated over the result-
ing global schema.

In summary, we see that a total of 6+1+1+15+3 = 26 man-
ually defined transformations are required to be able to an-
swer all seven of these high priority queries.

By way of comparison, in the original iSpider integration
(see Chapter 7 and Appendix E of [18] for full details, in-
cluding listings of all the transformations), three successive
versions of the global schema were produced, GS1, GS2,
GS3. GS1 was defined to be identical with the Pedro schema
due to the rich content of this schema compared with the
gpmDB and PepSeeker schemas. AutoMed transformation
pathways were then defined from the three data sources to
GS1. Since all GS1 schema constructs have a trivial identify
derivation from Pedro, we can consider the integration ef-
fort to comprise the manually defined transformations from
gpmDB and PepSeeker to GS1. Also, we ignore any trans-
formations whose query part is just Range V oid Any. There
are 19 non-trivial transformations from gpmDB to GS1 and
35 non-trivial transformations from PepSeeker to GS1.

The next version of the global schema, GS2, improved on
GS1 by adding concepts that are supported by the gpmDB
data source but not by Pedro and that therefore where not
present in GS1. This required an additional 41 non-trivial
transformations from PepSeeker to GS2 (note that all the
additional transformations from Pedro to GS2 would have
query parts Range V oid Any).

The final version of the global schema, GS3, improved on
GS2 by adding concepts that are supported by the PepSeeker
data source but not by Pedro or gpmDB and that therefore
were not present in GS2. This required no more non-trivial
transformations (all the additional transformations from Pe-
dro and gpmDBto GS3 would have query parts Range V oid
Any). Hence there are a total of 19+35+41=95 non-trivial
transformations required by the original iSpider integration
effort.

Of course, using the number of manually defined transfor-
mations as a comparison metric is rather crude; and more-
over, as stated earlier, the original iSpider integration did
not attempt to undertake a query-driven integration. There-
fore, we are planning for the near future a more detailed
evaluation of our intersection schema-based data integration
methodology compared with traditional ones.

4. CONCLUSIONS
In this paper we have introduced a data integration method-
ology based on the concept of Intersection Schemas, using
the AutoMed data integration framework. We have demon-
strated the technique on a real-world data integration sce-
nario, adopting a query-driven approach, and have seen that
the number of user-defined steps required to perform the in-
tegration is significantly reduced compared to the original
data integration methodology used by the domain experts
on that project.

This work has been carried out in the context of the Au-
toMed data integration framework, which supports bidirec-
tional schema and data transformations but which, up till
now, has been used only for “up-front” data integration. In
this paper we have shown how the AutoMed toolkit can be
used to underpin a new light-weight data integration tech-
nique within an incremental pay-as-you-go data integration
process, and hence how AutoMed can be applied within a
dataspace environment.

Our future work includes extending the methodology so that
intersections can be created between any number of source
schemas at each iteration of the process, rather than just two
as at present. We will also undertake a more detailed evalu-
ation of our intersection-schema based integration approach
with traditional integration methodologies in the context
of further real-world large-scale data integration settings.
For these investigations, we will take in both cases a query-
driven approach and we will assess the productivity benefits
arising using our approach. Since our techniques and tools
are intended to be used by both domain experts and data
integration experts, we propose a user evaluation which will
consider two groups of users. The first group will consist of
people familiar with the application domain but with limited
knowledge of data integration processes, while the second
group will be familiar with data integration processes but
have limited knowledge of the application domain. Each
group will be split randomly into two equally-sized sub-
groups. Each subgroup of a given group will be asked to
undertake the same, query-driven, integration of a given
set of data sources, guiding one subgroup through an inter-
section schema-based methodoloty and the other subgroup
through a more traditional methodology, such as the ‘lad-
der’ approach [5]. A set of metrics will be measured for each
subgroup, for example the time taken to complete the in-
tegration and the number of key clicks required within the
toolset.

5. REFERENCES
[1] B. Alexe, B. T. Cate, P. G. Kolaitis, and W.-C. Tan.

Characterizing schema mappings via data examples.
ACM Trans. on Database Systems, 36(4):23, 2011.

[2] B. Alexe, L. Chiticariu, R. J. Miller, and W.-C. Tan.
Muse: Mapping understanding and design by
example. In Proc. ICDE, pages 10–19. IEEE, 2008.

[3] B. Alexe, W.-C. Tan, and Y. Velegrakis.
STBenchmark: towards a benchmark for mapping
systems. PVLDB, 1(1):230–244, 2008.

[4] B. Alexe, B. ten Cate, P. G. Kolaitis, and W.-C. Tan.
Designing and refining schema mappings via data
examples. In Proc. ACM SIGMOD, pages 133–144.
ACM, 2011.

[5] C. Batini, M. Lenzerini, and S. B. Navathe. A
comparative analysis of methodologies for database
schema integration. ACM Computing Surveys,
18(4):323–364, 1986.

[6] M. Boyd, C. Lazanitis, S. Kittivoraviktul, P. Mc Brien,
and N. Rizopoulos. An overview of the AutoMed
Repository. Technical Report, AutoMed Project, 2004.

[7] M. Franklin, A. Halevy, and D. Maier. From databases
to dataspaces: a new abstraction for information
management. ACM Sigmod Record, 34(4):27–33, 2005.

[8] A. Halevy, A. Rajaraman, and J. Ordille. Data
integration: the teenage years. In Proc. VLDB, pages
9–16. VLDB Endowment, 2006.

[9] C. Hedeler, K. Belhajjame, N. W. Paton, A. Campi,
A. A. Fernandes, and S. M. Embury. Flexible
dataspace management through model management.
In Proc. EDBT/ICDT Workshops, pages 114–134.
Springer, 2010.

[10] E. Jasper, A. Poulovassilis, L. Zamboulis, and H. Fan.
Processing IQL queries and migrating data in the
automed toolkit. Technical Report, AutoMed Project,
2003.

[11] E. Jasper, N. Tong, P. McBrien, and A. Poulovassilis.
Generating and optimising views from both as view
data integration rules. In Proc. DBIS’04, volume 972,
pages 13–30, 2004.

[12] M. Lenzerini. Data integration: A theoretical
perspective. In Proc. ACM PODS, pages 233–246.
ACM, 2002.

[13] P. McBrien. AutoMed in a nutshell. Technical Report,
AutoMed Project, 2006.

[14] P. McBrien and A. Poulovassilis. Data integration by
bi-directional schema transformation rules. In Proc.
ICDE, pages 227–238. IEEE, 2003.

[15] P. Mcbrien and A. Poulovassilis. P2P query
reformulation over both-as-view data transformation
rules. In Proc. DBISP2P, pages 310–322. Springer,
2006.

[16] N. Rizopoulos. Automatic discovery of semantic
relationships between schema elements. In Proc.
ICEIS (1), pages 3–8, 2004.

[17] B. ten Cate, P. G. Kolaitis, and W.-C. Tan. Schema
mappings and data examples. In Proc. EDBT, pages
777–780. ACM, 2013.

[18] J. Wang. A Framework and Architecture for Quality
Assessment in Data Integration. http://www.dcs.
bbk.ac.uk/research/recentphds/jwang.pdf, 2012.
[Online; accessed 01-December-2013].

[19] L. Zamboulis, H. Fan, K. Belhajjame, J. Siepen,
A. Jones, N. Martin, A. Poulovassilis, S. Hubbard,
S. M. Embury, and N. W. Paton. Data access and
integration in the ISPIDER Proteomics Grid. In Proc.
Data Integration in the Life Sciences, pages 3–18.
Springer, 2006.

[20] L. Zamboulis, N. Martin, and A. Poulovassilis. Query
performance evaluation of an architecture for
fine-grained integration of heterogeneous grid data
sources. Future Generation Computer Systems,
26(8):1073–1091, 2010.

