3 research outputs found

    HETEROGENEOUS GPU&CPU CLUSTER FOR HIGH PERFORMANCE COMPUTING IN CRYPTOGRAPHY

    Get PDF
    This paper addresses issues associated with distributed computing systems andthe application of mixed GPU&CPU technology to data encryption and decryptionalgorithms. We describe a heterogenous cluster HGCC formed by twotypes of nodes: Intel processor with NVIDIA graphics processing unit and AMDprocessor with AMD graphics processing unit (formerly ATI), and a novel softwareframework that hides the heterogeneity of our cluster and provides toolsfor solving complex scientific and engineering problems. Finally, we present theresults of numerical experiments. The considered case study is concerned withparallel implementations of selected cryptanalysis algorithms. The main goal ofthe paper is to show the wide applicability of the GPU&CPU technology tolarge scale computation and data processing

    Modified honey encryption scheme for encoding natural language message

    Get PDF
    Conventional encryption schemes are susceptible to brute-force attacks. This is because bytes encode utf8 (or ASCII) characters. Consequently, an adversary that intercepts a ciphertext and tries to decrypt the message by brute-forcing with an incorrect key can filter out some of the combinations of the decrypted message by observing that some of the sequences are a combination of characters which are distributed non-uniformly and form no plausible meaning. Honey encryption (HE) scheme was proposed to curtail this vulnerability of conventional encryption by producing ciphertexts yielding valid-looking, uniformly distributed but fake plaintexts upon decryption with incorrect keys. However, the scheme works for only passwords and PINS. Its adaptation to support encoding natural language messages (e-mails, human-generated documents) has remained an open problem. Existing proposals to extend the scheme to support encoding natural language messages reveals fragments of the plaintext in the ciphertext, hence, its susceptibility to chosen ciphertext attacks (CCA). In this paper, we modify the HE schemes to support the encoding of natural language messages using Natural Language Processing techniques. Our main contribution was creating a structure that allowed a message to be encoded entirely in binary. As a result of this strategy, most binary string produces syntactically correct messages which will be generated to deceive an attacker who attempts to decrypt a ciphertext using incorrect keys. We evaluate the security of our proposed scheme

    Investigation of Parallel Data Processing Using Hybrid High Performance CPU + GPU Systems and CUDA Streams

    Get PDF
    The paper investigates parallel data processing in a hybrid CPU+GPU(s) system using multiple CUDA streams for overlapping communication and computations. This is crucial for efficient processing of data, in particular incoming data stream processing that would naturally be forwarded using multiple CUDA streams to GPUs. Performance is evaluated for various compute time to host-device communication time ratios, numbers of CUDA streams, for various numbers of threads managing computations on GPUs. Tests also reveal benefits of using CUDA MPS for overlapping communication and computations when using multiple processes. Furthermore, using standard memory allocation on a GPU and Unified Memory versions are compared, the latter including programmer added prefetching. Performance of a hybrid CPU+GPU version as well as scaling across multiple GPUs are demonstrated showing good speed-ups of the approach. Finally, the performance per power consumption of selected configurations are presented for various numbers of streams and various relative performances of GPUs and CPUs
    corecore