150,403 research outputs found

    An Asynchronous Replication Model to Improve Data Available into a Heterogeneous System

    Get PDF
    Data replication is an important technique for high level data availability, especially applied for distributed systems. To enhance the data access and data reliability, data replication is one of the most important aspects. This paper is proposed a asynchronous replication model. This model also supports heterogeneous system which is currently a very promising system. In our proposed model the main server and replication servers are loosely coupled. Since the structure is loosely coupled and asynchronous model thus there is less dependency on each server. Moreover the proposed model is supporting heterogeneous system, so it will be highly cost minimizing solution for efficient data replication. Keywords: Data replication, Data Persistency, Asynchronous, Heterogeneous Replication

    Smart PIN: utility-based replication and delivery of multimedia content to mobile users in wireless networks

    Get PDF
    Next generation wireless networks rely on heterogeneous connectivity technologies to support various rich media services such as personal information storage, file sharing and multimedia streaming. Due to users’ mobility and dynamic characteristics of wireless networks, data availability in collaborating devices is a critical issue. In this context Smart PIN was proposed as a personal information network which focuses on performance of delivery and cost efficiency. Smart PIN uses a novel data replication scheme based on individual and overall system utility to best balance the requirements for static data and multimedia content delivery with variable device availability due to user mobility. Simulations show improved results in comparison with other general purpose data replication schemes in terms of data availability

    Managing Data Replication and Distribution in the Fog with FReD

    Full text link
    The heterogeneous, geographically distributed infrastructure of fog computing poses challenges in data replication, data distribution, and data mobility for fog applications. Fog computing is still missing the necessary abstractions to manage application data, and fog application developers need to re-implement data management for every new piece of software. Proposed solutions are limited to certain application domains, such as the IoT, are not flexible in regard to network topology, or do not provide the means for applications to control the movement of their data. In this paper, we present FReD, a data replication middleware for the fog. FReD serves as a building block for configurable fog data distribution and enables low-latency, high-bandwidth, and privacy-sensitive applications. FReD is a common data access interface across heterogeneous infrastructure and network topologies, provides transparent and controllable data distribution, and can be integrated with applications from different domains. To evaluate our approach, we present a prototype implementation of FReD and show the benefits of developing with FReD using three case studies of fog computing applications

    A systematic mapping study on testing technique experiments: has the situation changed since 2000?

    Get PDF
    Context: Empirical Software Engineering (ESE) replication researchers need to store and manipulate experimental data for several purposes, in particular analysis and reporting. Current research needs call for sharing and preservation of experimental data as well. In a previous work, we analyzed Replication Data Management (RDM) needs. A novel concept, called Experimental Ecosystem, was proposed to solve current deficiencies in RDM approaches. The empirical ecosystem provides replication researchers with a common framework that integrates transparently local heterogeneous data sources. A typical situation where the Empirical Ecosystem is applicable, is when several members of a research group, or several research groups collaborating together, need to share and access each other experimental results. However, to be able to apply the Empirical Ecosystem concept and deliver all promised benefits, it is necessary to analyze the software architectures and tools that can properly support it

    Architecture for Mobile Heterogeneous Multi Domain Networks

    Get PDF
    Multi domain networks can be used in several scenarios including military, enterprize networks, emergency networks and many other cases. In such networks, each domain might be under its own administration. Therefore, the cooperation among domains is conditioned by individual domain policies regarding sharing information, such as network topology, connectivity, mobility, security, various service availability and so on. We propose a new architecture for Heterogeneous Multi Domain (HMD) networks, in which one the operations are subject to specific domain policies. We propose a hierarchical architecture, with an infrastructure of gateways at highest-control level that enables policy based interconnection, mobility and other services among domains. Gateways are responsible for translation among different communication protocols, including routing, signalling, and security. Besides the architecture, we discuss in more details the mobility and adaptive capacity of services in HMD. We discuss the HMD scalability and other advantages compared to existing architectural and mobility solutions. Furthermore, we analyze the dynamic availability at the control level of the hierarchy

    Smart PIN: performance and cost-oriented context-aware personal information network

    Get PDF
    The next generation of networks will involve interconnection of heterogeneous individual networks such as WPAN, WLAN, WMAN and Cellular network, adopting the IP as common infrastructural protocol and providing virtually always-connected network. Furthermore, there are many devices which enable easy acquisition and storage of information as pictures, movies, emails, etc. Therefore, the information overload and divergent content’s characteristics make it difficult for users to handle their data in manual way. Consequently, there is a need for personalised automatic services which would enable data exchange across heterogeneous network and devices. To support these personalised services, user centric approaches for data delivery across the heterogeneous network are also required. In this context, this thesis proposes Smart PIN - a novel performance and cost-oriented context-aware Personal Information Network. Smart PIN's architecture is detailed including its network, service and management components. Within the service component, two novel schemes for efficient delivery of context and content data are proposed: Multimedia Data Replication Scheme (MDRS) and Quality-oriented Algorithm for Multiple-source Multimedia Delivery (QAMMD). MDRS supports efficient data accessibility among distributed devices using data replication which is based on a utility function and a minimum data set. QAMMD employs a buffer underflow avoidance scheme for streaming, which achieves high multimedia quality without content adaptation to network conditions. Simulation models for MDRS and QAMMD were built which are based on various heterogeneous network scenarios. Additionally a multiple-source streaming based on QAMMS was implemented as a prototype and tested in an emulated network environment. Comparative tests show that MDRS and QAMMD perform significantly better than other approaches
    • 

    corecore