5,317 research outputs found

    Local and nonlocal pressure Hessian effects in real and synthetic fluid turbulence

    Full text link
    The Lagrangian dynamics of the velocity gradient tensor A in isotropic and homogeneous turbulence depend on the joint action of the self-streching term and the pressure Hessian. Existing closures for pressure effects in terms of A are unable to reproduce one important statistical role played by the anisotropic part of the pressure Hessian, namely the redistribution of the probabilities towards enstrophy production dominated regions. As a step towards elucidating the required properties of closures, we study several synthetic velocity fields and how well they reproduce anisotropic pressure effects. It is found that synthetic (i) Gaussian, (ii) Multifractal and (iii) Minimal Turnover Lagrangian Map (MTLM) incompressible velocity fields reproduce many features of real pressure fields that are obtained from numerical simulations of the Navier Stokes equations, including the redistribution towards enstrophy-production regions. The synthetic fields include both spatially local, and nonlocal, anisotropic pressure effects. However, we show that the local effects appear to be the most important ones: by assuming that the pressure Hessian is local in space, an expression in terms of the Hessian of the second invariant Q of the velocity gradient tensor can be obtained. This term is found to be well correlated with the true pressure Hessian both in terms of eigenvalue magnitudes and eigenvector alignments.Comment: 10 pages, 4 figures, minor changes, final version, published in Phys. Fluid

    Geodesic network method for flows between two rough surfaces in contact

    Get PDF
    A discrete network method based on previous asymptotic analysis for computing fluid flows between confined rough surfaces is proposed. This random heterogeneous geodesic network method could be either applied to surfaces described by a continuous random field or finely discretized on a regular grid. This method tackles the difficult problem of fluid transport between rough surfaces in close contact. We describe the principle of the method as well as detail its numerical implementation and performances. Macroscopic conductances are computed and analyzed far from the geometrical percolation threshold. Numerical results are successfully compared with the effective medium approximation, the application of which is also studied analytically
    corecore