3 research outputs found

    Single Shot Active Learning using Pseudo Annotators

    Full text link
    Standard myopic active learning assumes that human annotations are always obtainable whenever new samples are selected. This, however, is unrealistic in many real-world applications where human experts are not readily available at all times. In this paper, we consider the single shot setting: all the required samples should be chosen in a single shot and no human annotation can be exploited during the selection process. We propose a new method, Active Learning through Random Labeling (ALRL), which substitutes single human annotator for multiple, what we will refer to as, pseudo annotators. These pseudo annotators always provide uniform and random labels whenever new unlabeled samples are queried. This random labeling enables standard active learning algorithms to also exhibit the exploratory behavior needed for single shot active learning. The exploratory behavior is further enhanced by selecting the most representative sample via minimizing nearest neighbor distance between unlabeled samples and queried samples. Experiments on real-world datasets demonstrate that the proposed method outperforms several state-of-the-art approaches.Comment: 12 pages, 8 figure, submitted to Pattern Recognitio

    Scalable image quality assessment with 2D mel-cepstrum and machine learning approach

    Get PDF
    Cataloged from PDF version of article.Measurement of image quality is of fundamental importance to numerous image and video processing applications. Objective image quality assessment (IQA) is a two-stage process comprising of the following: (a) extraction of important information and discarding the redundant one, (b) pooling the detected features using appropriate weights. These two stages are not easy to tackle due to the complex nature of the human visual system (HVS). In this paper, we first investigate image features based on two-dimensional (20) mel-cepstrum for the purpose of IQA. It is shown that these features are effective since they can represent the structural information, which is crucial for IQA. Moreover, they are also beneficial in a reduced-reference scenario where only partial reference image information is used for quality assessment. We address the second issue by exploiting machine learning. In our opinion, the well established methodology of machine learning/pattern recognition has not been adequately used for IQA so far; we believe that it will be an effective tool for feature pooling since the required weights/parameters can be determined in a more convincing way via training with the ground truth obtained according to subjective scores. This helps to overcome the limitations of the existing pooling methods, which tend to be over simplistic and lack theoretical justification. Therefore, we propose a new metric by formulating IQA as a pattern recognition problem. Extensive experiments conducted using six publicly available image databases (totally 3211 images with diverse distortions) and one video database (with 78 video sequences) demonstrate the effectiveness and efficiency of the proposed metric, in comparison with seven relevant existing metrics. (C) 2011 Elsevier Ltd. All rights reserved

    Scalable image quality assessment with 2D mel-cepstrum and machine learning approach

    Get PDF
    Measurement of image quality is of fundamental importance to numerous image and video processing applications. Objective image quality assessment (IQA) is a two-stage process comprising of the following: (a) extraction of important information and discarding the redundant one, (b) pooling the detected features using appropriate weights. These two stages are not easy to tackle due to the complex nature of the human visual system (HVS). In this paper, we first investigate image features based on two-dimensional (2D) mel-cepstrum for the purpose of IQA. It is shown that these features are effective since they can represent the structural information, which is crucial for IQA. Moreover, they are also beneficial in a reduced-reference scenario where only partial reference image information is used for quality assessment. We address the second issue by exploiting machine learning. In our opinion, the well established methodology of machine learning/pattern recognition has not been adequately used for IQA so far; we believe that it will be an effective tool for feature pooling since the required weights/parameters can be determined in a more convincing way via training with the ground truth obtained according to subjective scores. This helps to overcome the limitations of the existing pooling methods, which tend to be over simplistic and lack theoretical justification. Therefore, we propose a new metric by formulating IQA as a pattern recognition problem. Extensive experiments conducted using six publicly available image databases (totally 3211 images with diverse distortions) and one video database (with 78 video sequences) demonstrate the effectiveness and efficiency of the proposed metric, in comparison with seven relevant existing metrics. © 2011 Elsevier Ltd. All rights reserved
    corecore