1,342 research outputs found

    Gershgorin disks for multiple eigenvalues of non-negative matrices

    Full text link
    Gershgorin's famous circle theorem states that all eigenvalues of a square matrix lie in disks (called Gershgorin disks) around the diagonal elements. Here we show that if the matrix entries are non-negative and an eigenvalue has geometric multiplicity at least two, then this eigenvalue lies in a smaller disk. The proof uses geometric rearrangement inequalities on sums of higher dimensional real vectors which is another new result of this paper

    Spectral theorem for the Lindblad equation for quadratic open fermionic systems

    Full text link
    The spectral theorem is proven for the quantum dynamics of quadratic open systems of n fermions described by the Lindblad equation. Invariant eigenspaces of the many-body Liouvillean dynamics and their largest Jordan blocks are explicitly constructed for all eigenvalues. For eigenvalue zero we describe an algebraic procedure for constructing (possibly higher dimensional) spaces of (degenerate) non-equilibrium steady states.Comment: 19 pages, no figure

    Local normal forms for c-projectively equivalent metrics and proof of the Yano-Obata conjecture in arbitrary signature. Proof of the projective Lichnerowicz conjecture for Lorentzian metrics

    Get PDF
    Two K\"ahler metrics on a complex manifold are called c-projectively equivalent if their JJ-planar curves coincide. These curves are defined by the property that the acceleration is complex proportional to the velocity. We give an explicit local description of all pairs of c-projectively equivalent K\"ahler metrics of arbitrary signature and use this description to prove the classical Yano-Obata conjecture: we show that on a closed connected K\"ahler manifold of arbitrary signature, any c-projective vector field is an affine vector field unless the manifold is CPnCP^n with (a multiple of) the Fubini-Study metric. As a by-product, we prove the projective Lichnerowicz conjecture for metrics of Lorentzian signature: we show that on a closed connected Lorentzian manifold, any projective vector field is an affine vector field.Comment: comments are welcom

    Tridiagonal realization of the anti-symmetric Gaussian β\beta-ensemble

    Full text link
    The Householder reduction of a member of the anti-symmetric Gaussian unitary ensemble gives an anti-symmetric tridiagonal matrix with all independent elements. The random variables permit the introduction of a positive parameter β\beta, and the eigenvalue probability density function of the corresponding random matrices can be computed explicitly, as can the distribution of {qi}\{q_i\}, the first components of the eigenvectors. Three proofs are given. One involves an inductive construction based on bordering of a family of random matrices which are shown to have the same distributions as the anti-symmetric tridiagonal matrices. This proof uses the Dixon-Anderson integral from Selberg integral theory. A second proof involves the explicit computation of the Jacobian for the change of variables between real anti-symmetric tridiagonal matrices, its eigenvalues and {qi}\{q_i\}. The third proof maps matrices from the anti-symmetric Gaussian β\beta-ensemble to those realizing particular examples of the Laguerre β\beta-ensemble. In addition to these proofs, we note some simple properties of the shooting eigenvector and associated Pr\"ufer phases of the random matrices.Comment: 22 pages; replaced with a new version containing orthogonal transformation proof for both cases (Method III

    An Accelerated Conjugate Gradient Algorithm to Compute Low-Lying Eigenvalues --- a Study for the Dirac Operator in SU(2) Lattice QCD

    Get PDF
    The low-lying eigenvalues of a (sparse) hermitian matrix can be computed with controlled numerical errors by a conjugate gradient (CG) method. This CG algorithm is accelerated by alternating it with exact diagonalisations in the subspace spanned by the numerically computed eigenvectors. We study this combined algorithm in case of the Dirac operator with (dynamical) Wilson fermions in four-dimensional \SUtwo gauge fields. The algorithm is numerically very stable and can be parallelized in an efficient way. On lattices of sizes 44−1644^4-16^4 an acceleration of the pure CG method by a factor of~4−84-8 is found.Comment: 25 pages, uuencoded tar-compressed .ps-fil
    • …
    corecore