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1 Introduction

Many problems in computational physics require the numerical determination
of some of the low-lying eigenvalues of a (sparse) hermitian matrix A. For
instance, A may be a Hamiltonian which describes a many particle problem in
quantummechanics, or it may be the Dirac operator 4 in a lattice gauge theory.
In case of a moderately large problem, the Lanczos method [1], or Cullum's
and Willoughby's variant thereof [2], is popular. However, the Lanczos method
can be problematic whenever one is interested in only a few eigenvalues.

In refs. [3{5] it was proposed to use a conjugate gradient (CG) method for the
computation of low-lying eigenvalues. For the k-th eigenvalue one minimizes
the Ritz functional 5

�(z) =
hz;Azi
hz; zi ; (1)

with z 6= 0 and orthogonal to the eigenspace of the (k � 1) lower eigenvalues.
This method is attractive because it yields the eigenvalues with controlled nu-
merical errors. A Lanczos method can be competitive in practice, but whether
eigenvalues have converged can be estimated only from experience [6], and
not from a rigorous error bound. Moreover, a Lanczos method cannot pro-
vide information about the multiplicities of eigenvalues, in contrast to the
CG method. Some applications also require knowledge of the eigenvectors,
for instance to isolate the contribution of low-lying eigenmodes to physical
observables. For this purpose the CG algorithm is favourable because it also
yields approximate eigenvectors.

In this article we investigate the CG algorithm in the version of ref. [5] and
show that it can be accelerated by alternating incomplete CG minimizations
with exact diagonalizations in the subspace spanned by the numerically com-
puted approximate eigenvectors. We also improve the stopping criterion. This
modi�ed algorithm is studied in the context of lattice gauge theory where we
take A proportional to the square of 
5 times the Dirac operator for massive
Wilson fermions in four-dimensional SU(2) gauge �elds. For an alternative
way of combining CG searches with intermediate diagonalizations we refer to
the work by Bunk [7].

Our interest in the low-lying eigenvalues of the lattice Dirac operator in QCD
arises from their relation to chiral symmetry breaking [8] and from L�uscher's
proposal [9,10] for the simulation of dynamical fermions. There, the small

4 which is hermitean after multiplication with 
5.
5 h � ; � i denotes the scalar product of the Hilbert space.
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eigenvalues can be used to correct for possible systematic errors in case that
the polynomial approximation to the function 1=s is too poor at the lower end
of the spectrum.

We expect that the results of the numerical studies presented in this paper
translate to any operator which has a comparable spectrum to the (squared)
Dirac operator. There, in a nontrivial background gauge �eld, the distribution
of the eigenvalues is relatively smooth without exceptional gaps. On 44 � 164

lattices we �nd an acceleration of the pure CG method by a factor of 4 � 8,
depending on the lattice size and the number of low-lying eigenvalues required.

This paper is organised as follows. In sec. 2 we brie
y summarise the the-
oretical aspects of the CG algorithm of ref. [5], and we describe how it is
accelerated and how the stopping criterion is improved. Practical aspects and
the numerical implementation are discussed in sec. 3. In this section we also
pay attention to questions of parallelisation of the algorithm, in particular
on SIMD computers like APE/Quadrics systems. In sec. 4 we report perfor-
mance tests of the algorithm in case of the lattice Dirac operator, and we draw
conclusions in sec. 5.

2 Description of the algorithm

Before we describe our method in detail in the subsequent sections, we outline
the idea behind the improvements of the CG method.

Variational methods to determine the lowest 6 eigenvalues of a hermitian op-
erator A in a Hilbert space require implicitly two steps: First, a suitable basis
fw1; w2; : : : ; wng has to be chosen for the subspace in which the eigenvectors
are searched for (e.g. the `trial wave-functions' for the ground state). Second,
one has to determine linear combinations of these trial vectors such that the
Ritz functional is minimised in appropriate subspaces of spanfw1; w2; : : : ; wng.
The basic idea of our algorithm is to combine these two steps.

In fact, one can construct a reliable algorithm based only on step one by using
the method of conjugate gradients [3{5]. Thereby, estimators wk of the correct
eigenvectors vk of A (kvkk = kwkk = 1) are constructed for each eigenvalue
| one after the other and in increasing order, k = 1; : : : ; n. The expensive
search for the di�erent wk within the full high-dimensional space is thus done
in an essentially independent manner, except for a projection on the subspace
orthogonal to the wl, l < k, which have already been found.

6 We assume that A is bounded from below. This will be the case in practical

numerical work where A can be represented by a �nite matrix.
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In order to accelerate this algorithm we alternate the CG searches for the
wk with intermediate diagonalizations of the corresponding (small) hermitian
matrix

Mkl = hwk; Awli : (2)

Most of the eigenvalues of M will be improved estimates for the low-lying
eigenvalues of A. 7 For the eigenvectors improved estimates w0

k are obtained
through linear combinations of the wk with coe�cients which correspond to
eigenvectors of M . In the following the vectors vk, wk, and w0

k

After the diagonalization step the CG algorithm is restarted with initial vec-
tors w0

k. Unfortunately, the e�ciency of the CG method may su�er from this
restart. This is, �rst of all, because a new system of search directions has to be
built up, and second, because the intermediate diagonalization is unfavourable
for the higher eigenvectors. Moreover, for the (k+1)-th eigenvector one is ac-
tually working with the matrix Q?

k AQ
?
k instead of P?

k AP
?
k , where

Q?
k = 1l�

kX
i=1

wi hwi; � i (3)

can be a bad approximation to the projector

P?
k = 1l�

kX
i=1

vi hvi; � i : (4)

Therefore, the intermediate diagonalization may partly spoil the naively ex-
pected gain in convergence, and clearly, a careful balancing between CG search
cycles and intermediate diagonalizations will be crucial in order to get an op-
timal trade-o�.

Independent of the improvement of the rate of convergence, the intermediate
diagonalization allows to speed up the algorithm by providing a better, i.e.
more realistic, stopping criterion. It takes into account that the CG method
converges proportional to the squared norm of the (complex) gradient of (1),

g(z) = [A� �(z)]z = hz; zi ; (5)

rather than a linear behaviour, which can be concluded from the error estimate
of refs. [4,5] but which is typically several orders of magnitude too pessimistic.

7 There may also be some eigenvalue estimates which get worse.
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2.1 Conjugate gradient algorithm to minimise the Ritz functional

In this subsection we recall the CG algorithm of ref. [5] for the computation
of the lowest eigenvalue of a (sparse) hermitian matrix A. In contrast to the
standard CG procedure for the minimisation of quadratic forms [1,11,12], pos-
itivity of A is not required for the CG minimisation of the corresponding Ritz
functional. We also note that due to the scale invariance of the Ritz functional
(1) one has the orthogonality relation

hz; g(z)i = 0 for any vector z 6= 0. (6)

The CG recursion starts with an arbitrary non-zero initial vector x1 and a
search direction p1 = g(x1). Then, in the i-th iteration (i = 1; 2; : : :) one
computes the new vector

xi+1 = xi + �i pi (7)

by choosing �i in such a way that �(xi+1) is minimised. Note that in the case
of the Ritz functional this minimization can be carried out analytically. The
new search direction is obtained by setting

pi+1 = gi+1 + �i [pi � xi+1hxi+1; pii=hxi+1; xi+1i] (8)

where gi = g(xi), and �i is computed according to

�i = hgi+1; gi+1i=hgi; gii : (9)

As in the case of the multidimensional minimisation of a general function
with non-constant Hessian matrix, there is no unique criterion for the choice
of the search directions pi and of the scale factors �i (for related works see
refs. [3,4,7]). Eq. (8) ensures the orthogonality relation

hxj; pji = 0 for all j � 1, (10)

which is imposed here in accordance with the scale invariance of the Ritz
functional (cf. eq. (6)), but which does in general not hold in standard CG al-
gorithms 8 . Eq. (9) for the choice of �i is part of the de�nition of the algorithm
and corresponds to the Fletcher-Reeves method [11,12].

8 Usually the term proportional to xi+1 in (8) is not present.
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The orthogonality relation

hpi; gi+1i = 0 (11)

follows (as in the case of minimising a quadratic form) simply from the fact
that �i+1 is minimised along the line (7). Together with (8) and (6) this implies

hpi; gii = hgi; gii : (12)

The algorithm terminates when pi = 0 , gi = 0, i.e. when xi is an exact
eigenvector. Here \(" follows from (8), while \)" is a consequence of (12).
In practice, one stops the recursion when kgik is smaller than some threshold.

In ref. [5] it was shown that the algorithm is well-de�ned, i.e. the absolute
minimum of �(xi+1) along the line (7) is attained for a �nite value of �i unless
pi = gi = 0 (and the algorithm terminates). Moreover, all �i are real [5].

In a naive implementation of the above algorithm one might run into numerical
di�culties because it follows from (7) and (10) that kxik grows monotonically

kxi+1k2 = kxik2 + �2i kpik2 : (13)

To circumvent this increase one can formulate the CG recursion entirely in
terms of normalised vectors by making use of the scale invariance of the Ritz
functional

xi !
xi

kxik
; pi ! pi � kxik ; gi ! gi � kxik : (14)

A numerical implementation of the accordingly rescaled basic recursion can
be set up in such a way that it may be considered as an operation working on
\states" (x; y; p; �; kpk; kgk) consisting of

{ a unit vector x,
{ the vector y = Ax,
{ the current search direction p,
{ the value � = �(x) of the Ritz functional,
{ the norm kpk of p, and the norm kgk of the gradient g = Ax� �x.

The initial vector x may be chosen randomly, for instance, and the initial
search direction p is set equal to the gradient at x. The recursion then produces
the next state (x0; y0; p0; �0; kp0k; kg0k) from the current one in the following six
steps.

(i) Check whether the stopping criterion is satis�ed and exit if true.

6



(ii) Calculate Ap and store the result in some auxiliary array z.
(iii) Compute 9 cos � > 0 and sin � by minimising the Ritz functional along

the circle x cos � + p=kpk sin �.
(iv) Compute x0 and y0 according to

x0=cos � x+ sin � p=kpk ; (15)

y0=cos � y + sin � z=kpk : (16)

(v) Compute g0 = y0 � �0x0 and store the result in the auxiliary array previ-
ously used for z.

(vi) Calculate the norm kg0k, the coe�cient � = cos �kg0k2=kgk2, and

p0 = g0 + � [p� x0hx0; pi] : (17)

The algorithm is guaranteed to converge because the sequence of �'s is mono-
tonically decreasing, and it is bound from below. In practice one has to halt
the algorithm after a limited number of iterations. A safe stopping criterion
could be based on the following rigorous error estimate which one veri�es by
expanding x in an orthonormal basis of eigenvectors of A:

If x is a unit vector such that the gradient of the Ritz functional satis�es

kg(x)k < !, then there exists an (exact) eigenvalue � of A such that

j�� �(x)j < ! : (18)

2.2 Higher eigenvalues and intermediate diagonalization

In order to extend the CG method to the computation of further | degenerate
or higher-lying | eigenvalues of A, the CG search directions are restricted
to the subspace orthogonal to previously found eigenvectors. More precisely,
if v1; : : : ; vn�1 denote the exact eigenvectors of A corresponding to the n �
1 lowest-lying eigenvalues �1; : : : ; �n�1, then an approximation to the next
eigenvalue �n can be determined by performing the CG minimisation of the
functional hz; P?

n�1AP
?
n�1zi=hz; P?

n�1zi where P?
n�1 is given by eq. (4).

In practice, only approximations w1; : : : ; wn�1 to the exact eigenvectors are
available, and the CG minimisation for the next eigenvalue can only be per-
formed with Q?

n�1 given by (3). Depending on the quality of the approximation
of P?

n�1 by Q
?
n�1, the vector wn resulting from the CG search, may then have a

non-vanishing component in spanfv1; : : : ; vn�1g. This misorientation may be
reduced by choosing a new basis fw0

1
; : : : ; w0

ng of spanfw1; : : : ; wng in which

9 In the algorithm where one works with normalised xi, �i is conveniently replaced

by a real angle �i with cos �i = kxik=kxi+1k, and sin �i = �ikpik=kxi+1k [5]. These

quantities cos �i and sin �i as well as �
0 can be computed purely algebraically.
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QnAQn is diagonal, where Qn = 1l � Q?
n . Such an intermediate diagonaliza-

tion step yields also improved estimates for most of the eigenvalues of A and
rigorous error bounds analogous to eq. (18).

The vectors w0
k of the new basis are given by

w0
k =

nX
l=1

�
(k)

l wl for k = 1; : : : ; n (19)

where �
(k)

l denotes the l-th component of the k-th normalized eigenvector ofM ,

i.e.
Pn

m=1
Mlm �

(k)
m = �k �

(k)

l with k�(k)k = 1. The linear combinations (19) are
exact eigenvectors of A restricted to the subspace spanned by the numerically
computed wk,

QnAQnw
0
k = �k w

0
k ; (20)

and the eigenvalues �k of M equal the corresponding values of the Ritz func-
tional �(w0

k). The relation of these estimators to exact (possibly degenerate)
eigenvalues of A is clari�ed by the following lemma [5]:

Suppose the gradient of the Ritz functional satis�es kg(wk)k < ! for ev-

ery wk in a set of orthonormal vectors fw1; : : : ; wng and let �k denote the

eigenvalues of the matrix with elements Mkl = hwk; Awli. Then there exist

n orthonormal eigenvectors of A with eigenvalues �1; : : : ; �n such that

j�k � �kj < !
p
n for all k = 1; : : : ; n. (21)

This lemma shows that the eigenvalues are obtained with the correct multiplic-
ities, which cannot be concluded from (18) applied to all the �(wk) separately.

The linear combinations w0
k, which again form an orthonormal set, can be

expected to be better approximations to the true eigenvectors vk than the wk.
Using these rotated vectors w0

k as the starting vectors for a subsequent cycle
of CG searches leads us to the following algorithm:

(i) For each k = 1; : : : ; n in succession, compute approximations wk to the
eigenvectors vk of A by performing only a certain number N(k) of CG
iterations for the minimisation of hz;Q?

k�1AQ
?
k�1zi=hQ?

k�1z;Q
?
k�1zi.

(ii) Compute the matrix M , diagonalize it, and determine the linear com-
binations (19). If necessary, reshu�e the indices k in such a way that
�1 � : : : � �n.

(iii) Exit if a stopping criterion (see below) is ful�lled for all k = 1; : : : ; n.
Otherwise, continue with the CG cycles in (i) using w0

k as initial vectors
(and possibly di�erent search lengths N(k)).
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This method of alternating CG cycles with intermediate diagonalizations of A
in the basis of approximate eigenvectors leads to a substantial acceleration of
the algorithm, both in terms of the total number of CG iterations and in terms
of computer time. An optimal choice of the numbers N(k) for each cycle of
CG iterations turns out to be a crucial ingredient. Our criterion for choosing
N(k) in an adaptive and automatic way will be discussed in sec. 3.3.

We note that the diagonalization step has an ambivalent character. SincePn
i=1 �(wi) =

Pn
i=1 �i remains invariant during step (ii), it follows that when-

ever there are estimates �k < �(wk), which are improved by step (ii), there
are also | possibly worse | estimates �k > �(wk). It turns out that typically
just the last few �k, with k not much smaller than n, are lifted above the
corresponding �(wk). This suggests to introduce a few \dummy" eigenvalues,
i.e. if one is interested in the n lowest eigenvalues, one runs the algorithm with
n+ l eigenvalues (l being a small integer number), but one does not demand
the stopping criterion for �k with k > n. Of course, if then all eigenvalues but
the \dummies" have converged, one should not include the latter in the last
diagonalization any more. Otherwise their lower precision could increase the
error of the other eigenvalues, in particular the highest ones.

2.3 Error estimates based on Temple's inequality

Terminating the iterations only when kg(wk)k < ! is ful�lled for all k, one
ensures the rigorous error bounds (18) and (21). However, in realistic cases
the actual error is found to be signi�cantly smaller because the method does
not only converge linearly (proportional to kgk) but rather quadratically (pro-
portional to kgk2). The latter is taken into account by an error estimate based
on Temple's theorem [13,14].

Let �1 be the lowest (possibly degenerate) eigenvalue of a hermitian opera-
tor A. Provided l>1 is a lower bound for the next higher eigenvalue denoted
by �>1 with �>1 � l>1 > �(z), Temple's inequality yields a lower bound for
�1 by

�(z)� �T (z) � �1 � �(z) for all z 6= 0, (22)

where

�T (z) =

hz;A2zi
hz;zi � �(z)2

l>1 � �(z)
: (23)

Rewriting the numerator in (23) in terms of kg(z)k2 we obtain the error esti-

9



mate

0 � �(z)� �1 �
hz; zi

l>1 � �(z)
kg(z)k2 ; (24)

which shows that the error is bound by kgk2.

Generalizations analogous to (24) hold for higher eigenvalues as well [13,14]
and can be used as a more e�cient stopping criterion than the bound from
kgk. In the numerical studies carried out, we found that the true error is
described well-enough for the purpose of error estimation by a constant times
kgk2. This behaviour will also be exploited by a third stopping criterion which
we discuss in sec. 3.4.

3 Numerical implementation of the algorithm

In this section we shall present some details of the numerical implementation
of the algorithm described in the previous section. Because we have in mind
numerically extensive applications we will stress aspects of parallelisation.
Since we have performed our studies on APE/Quadrics parallel computers, we
shall also pay attention to questions of the parallelisation on single-instruction-
multiple-data (SIMD) architectures and of the numerical stability in view of
restricted 32-bit 
oating point arithmetics.

3.1 CG minimisation of the Ritz functional

The simplest way to parallelise the CG part of the algorithm is by geometrical
data decomposition, where the "large" vectors x, p, y and z are partitioned
into sub-vectors of equal length, each of which is treated (and stored) on
a di�erent processor node. The main part of 
oating-point operations to be
performed on the vectors, like scalar products, linear combinations or the mul-
tiplication with the matrix A, can then be done simultaneously on all nodes
for the locally stored sub-vectors. Assuming that the matrix A is sparse and
local, like the Wilson-Dirac operator considered below or any other similarly
discretized di�erential operator, only a few nearest neighbour communications
are needed for the matrix-vector multiplication provided that the data par-
titioning respects the geometrical structure of the original physical system
which is investigated.

Scalar products require a simultaneous local summation over the components
of the sub-vectors on each node followed by a global summation over all nodes

10



to collect the partial results from the products of the sub-vectors. In order to
avoid accumulation of rounding errors in these summations, which may involve
a large number of terms, we use Kahan's formula for the local summation and
an e�ective double precision method for the global summation [15].

The program can be organised in such a way that also multiple replica of a
physical system, i.e. di�erent matrices A, can be treated in parallel on subsets
of the nodes of the whole machine. Of course, on a SIMD architecture one
then introduces the problem that some of the processors may become idle if
not all systems have converged at the same time. This cause of ine�ciency is
signi�cantly reduced in our algorithm as a result of the intermediate diago-
nalizations (see sec. 4.2).

The CG recursion itself is stabilized by renormalizing the state (cf. sec. 2.1)
every 10{50 CG iterations (and at the end of each CG cycle). This amounts to
readjusting the length of x to unity, recalculating y = Ax, and subtracting a
linear combination of x and g from p to ensure the relations eqs. (10) and (12).
Moreover, the norms of p and g and the current value of the Ritz functional are
recalculated. As further safety measures we use numerically stable formulas in
the minimisation of the Ritz functional on the circles (15), and the magnitude
of � in eq. (17) is limited in order to avoid that the search vectors are becoming
large. (If this cuto� comes to e�ect it just amounts to partially restarting the
CG algorithm). In the case of higher eigenvalues k > 1 the renormalization of
the state also includes the projection of x and p on the orthogonal complement
of the previously computed approximate eigenvectors.

In order to ensure that x and p remain orthogonal to the previously deter-
mined eigenvector approximations, the corresponding projection with Q?

k is
in principle required once per CG iteration when evaluating the matrix-vector
product z = Ap. Since the number of vector operations 10 involved in Q?

k

grows proportional to k, a signi�cant or even dominant fraction of the CPU-
time is spent on these projections already for moderately large k. Fortunately,
one does not observe any instabilities or signi�cant e�ects when skipping these
projections. It is su�cient in practice to perform them only together with the
state renormalizations mentioned above. This indicates that already after a
few iterations, the approximate eigenvectors are su�ciently well oriented into
the direction of the exact eigenvectors and that the algorithm is numerically
very stable.

10 Scalar products and linear combinations which themselves require an absolute

CPU-time roughly proportional to the linear dimension of A
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3.2 Jacobi diagonalizer for hermitian matrices

For the diagonalization of the small matrix M of eq. (2) we use the well-
known method of iterative Jacobi rotations [16,17,1,12] which is conceptu-
ally very simple and numerically foolproof. Other methods, such as repeated
Householder re
ections followed by diagonalization of the resulting tridiagonal
matrix (e.g. by the QL or QR algorithm or by bisection), are believed to be
superior for larger matrices, at least on serial or vector computers [17,1,12].
On the other hand, the Jacobi algorithm is straightforward to implement on a
SIMD machine because of its simple global 
ow (no pivoting as might occur in
case of a Householder transformation) and it can exploit the situation whenM
is almost diagonal. Moreover, the Jacobi method behaves well in cases when
there are multiple or close eigenvalues [18], and it converges quadratically.

By means of unitary similarity transformations the hermitian matrix M is
transformed iteratively into diagonal form without creating an intermediate
tridiagonal matrix. In each complete Jacobi sweep one visits all o�-diagonal
elements in a �xed order and annihilates them by a Jacobi rotation. Successive
rotations undo previously set zeros, but the norm of the o�-diagonal elements

o�(M) =
sX

i6=j

jMij j2 (25)

nevertheless decreases monotonically until the matrix is diagonal to machine
precision. The matrix of eigenvectors is obtained almost as a by-product, sim-
ply by accumulating the product of the Jacobi rotations. While in the lit-
erature [16,1,12] the method is discussed for real symmetric matrices, the
generalisation for complex hermitian matrices is straightforward if one uses
the parametrisation of the rotation matrices given in [17]; one simply has to
keep trace of the additional complex phase of the o�-diagonal elements. The
convergence we found in our tests is very fast, typically within a few sweeps,
and thus the CPU cost is negligible in comparison with the CG part.

In order to obtain the eigenvalues of M in increasing order, �1 � : : : � �n,
the Jacobi diagonalizer has to be combined with a routine which sorts the
eigenvalues and rearranges the eigenvectors of M correspondingly. The need
for this sorting arises from the assumption that w0

i is a better approximation
to a low-lying eigenvector than w0

j if �i � �(w0
i) < �(w0

j) � �j. Moreover, it
may happen that the (pure) CG part on its own produces approximations wi

which do not satisfy �(w1) � : : : � �(wk). This kind of \level crossing" occurs
whenever the search for some higher eigenvalue �nds a component proportional
to a low-lying eigenvector which is not yet in the span of the previously found
approximate eigenvectors. The sorting is also necessary for using the Temple
bound as a stopping criterion.
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3.3 Length of the CG cycles

In step (i) of our algorithm (see sec. 2.2) the CG search for the k-th eigenvalue
is terminated after at most N(k) iterations (or before, as soon as the precision
required by the stopping criterion has been reached). So far, we have not yet
speci�ed how this maximal length of the CG searches should be chosen. 11 The
simplest procedure would be to take a �xed value N(k) = N0 for all CG search
cycles and for all eigenvalues. The optimal choice of N0 will then depend on
the properties of the matrixA, in particular on those which determine the rate
of convergence of the algorithm, like the dimension of A or/and the (unknown)
spectrum itself.

Looking for a strategy to �nd an optimal choice of N0 we have investigated the
number of iterations which are spent for the individual eigenvalues. It turns
out that the lower eigenvalues generally need least iterations for relatively
small values of N0. This is to be expected because the lower eigenvalues gain
from frequent intermediate diagonalizations. On the other hand, the higher
eigenvalues prefer larger values of N0. This is plausible for two reasons: First,
the fewer iterations have been spent on the lower eigenvalues, the worse is
the approximation of the projectors P?

k�1 by the Q?
k�1. The purpose of these

projections is to keep the search directions for the k-th eigenvalue orthogonal
to the space spanned by the eigenvectors belonging to eigenvalues �l with
l < k. Therefore, a large misorientation between P?

k�1 and Q?
k�1 may lead

to CG steps with larger components in the unwanted directions of the lowest
eigenvectors. Second, for the higher eigenvalues, which in general have a worse
rate of convergence, the loss due to restarting the CG search seems to be larger
than for the lower eigenvalues. Finding the optimal value of N0 corresponds
therefore to a compromise between lower eigenvalues, which converge fastest
for small N0, and higher eigenvalues, which need less iterations for large N0.

One may try to reduce the loss from restarting the CG algorithm by storing
for each eigenvalue the last search direction pk of a CG cycle. Then, after
performing the intermediate diagonalization step, one restarts the next CG
cycle for the k-th eigenvalue with initial search directions, which are obtained
by rotation analogous to (19):

p0k =
nX
i=1

�
(k)

i pi : (26)

Indeed, if the algorithm is likewise modi�ed the best performance (i.e. the
least total number of CG iterations) is achieved for smaller values of N0 than

11 For the sake of notational simplicity we do not explicitly indicate the fact that

N(k) may be di�erent in each CG cycle.
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without saving the search directions. Moreover, the same value of N0, which is
optimal for the total number of iterations, then turns out to be also optimal for
most of the individual eigenvalues. However, for the cases we tested, the total
number of iterations needed for the modi�ed algorithm was not signi�cantly
smaller than in the original version without saving the search directions and,
of course, the value of N0 is still a parameter which needs to be tuned.

To avoid the problem of tuning the value of N0 we propose a di�erent strategy
in which N(k) is not �xed but rather determined independently for each CG
cycle and for each eigenvalue by a suitable criterion. Motivated by the role
played by an adequate precision of the projectors Q?

k�1, we determine the
length of the CG search cycles by the requirement that the error of the Ritz
functional for the current eigenvalue has been decreased at least by a factor
of 
�1 = O(10). Using the convergence proportional to kgk2, this amounts to
running the CG searches for each eigenvalue until

kgik2
kg0k2

� 
 ; (27)

where g0 and gi are the gradient of the corresponding Ritz functional in the
�rst and last iteration of the present CG search, respectively. Proceeding ac-
cording to (27) ensures a simultaneous and homogeneous convergence for all
eigenvalues. The CG searches for higher eigenvalues automatically become
longer because of their slower convergence. Similarly the lengths of the CG
searches are automatically adjusted appropriately in the di�erent cycles during
the algorithm.

The choice of the ratio 
 is rather uncritical and in practice does not need
to be tuned even when treating quite di�erent matrices A. We found 
 � 0:1
to be a good value in all our tests, and the corresponding total number of
iterations needed for convergence was comparable or often less than what
could be achieved with the optimal choice for a �xed N0. Changing the ratio

 to 0:05 or 0:2, the total number of required iteration varies by at most 10%,
and in most cases it is increased.

In addition to the criterion for the reduction of kgk2 according to (27), it is
advisable to impose a minimal and maximal value on N(k). Restricting the
lowest value of N(k) to at least a few, say 5, iterations prevents the �rst few
CG cycles, when the decrease of kgk can be very fast, from being unreasonably
small. The maximal search length should be very large, O(100) or bigger, and
this cut-o� should become e�ective only in rare cases when wasting too much
iterations in an extremely slow convergent CG search (which may bene�t from
the intermediate diagonalization).

If di�erent matrices A are treated at the same time on a SIMD parallel com-
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puter, it is possible to require that condition (27) is ful�lled at least on one
node or on all nodes, which means that N(k) is determined by the fastest
system or by the slowest one, respectively. If the spectrum for the di�erent
matrices is comparable, both implementations are possible and either of them
can be faster by up to 20%. Nevertheless, we prefer the �rst variant in order
to insure a minimal decrease of kgk for all systems.

3.4 Stopping criteria

We based the stopping criterion on three di�erent estimates of the (relative)
error of the Ritz functional. In the numerical tests, we monitored the real error
by comparing with reference eigenvalues computed by a Lanczos algorithm [6].

The �rst stopping criterion exploits the rigorous error estimate proportional
to kgk. Before reaching the asymptotic convergence of the CG searches, i.e.
when evaluating the eigenvalues only with a crude relative error in the per-
mille range, this estimate is not yet too pessimistic and the other estimates to
be described below are not yet reliable enough. When running the algorithm
for a higher precision of the eigenvalues, the error estimate based on kgk will
soon become too pessimistic by several orders of magnitude, because it does
not take into account the convergence quadratic in kgk.

A more realistic error estimate, and hence a more e�cient stopping criterion,
is obtained by Temple's inequality. To apply it to the k-th eigenvalue a lower
bound l>k for the next-to-kth lowest eigenvalue �>k is needed. Since these
quantities are unknown a priori, one approximates l>k by the value of the
next Ritz functional �(wj), j � k+ 1, which is bigger than �(wk) (to the level
of the required precision). Although this choice does not satisfy �>k � l>k, as
required for (22), it turns out that the resulting error estimate usually remains
very safe (see below and also ref. [19]).

In practice, we do not use the Temple criterion during the �rst few CG cycles
and as long as we do not have �T (x0) < kg0k at the beginning of a new CG
cycle. This condition insures 12 that the approximation of l>k by �(w>k) in the
denominator of �T is not too bad. As long as �T (x0) < kg0k is not satis�ed, one
�nds that �T does not evolve smoothly, but \jumps" to higher values at the
beginning of the CG cycles when the estimate for l>k is signi�cantly decreased
by the intermediate diagonalization.

From the comparison with the Lanczos data we know that the proportionality

12 �T (wk) < kg(wk)k implies that the denominator of �T is strictly (in practice

several orders of magnitude) bigger than j�k � �(wk)j, cf. (18). The latter is of the

same order as the e�ect of using �(w>k) instead of �>k for l>k .
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factor in front of kgk2 in the Temple bound (24) is often too conservative
by up to a factor of order 100. For this reason we have implemented a third
stopping criterion based on the comparison of the values of the Ritz functional
� and �0 after two subsequent intermediate diagonalizations. We assume that
(at least after the startup phase when geometric progression is reached) the
actual error is reduced during a CG cycle by about the large factor 
�1 of
(27) by which kgk2 has decreased. This yields an (a posteriori) estimate for
the error at the beginning of the latest complete cycle,

�cycle =
� � �0
1 � 
 : (28)

The decrease of the error during this last completed CG cycle itself might
be estimated by an additional factor of 
. However, to remain on the safe
side, we refrain from this and use �cycle as the initial error estimate at the
beginning of only the following CG cycle. In order to have an actual stopping
criterion also in each CG iteration during the following (incomplete) CG cycle
we then extrapolate �cycle according to the decrease in kgk2. After the next
intermediate diagonalization �cycle is again updated according to (28).

This stopping criterion based on �cycle saves typically another 20� 40% of the
total number of iterations compared to using (only) the Temple criterion. In
particular, for the highest (and usually most expensive) eigenvalue the Temple
criterion cannot be used anyhow, such that one has at hand only the ine�cient
gradient criterion otherwise.

In �g. 1 we show the convergence for the lowest (a) and the 14th-lowest (b)
eigenvalue together with the various error estimates for one of our test con-
�gurations. Note the dip in the curve for the true error � � �14 in �g. 1(b).
This is due to picking up some component from eigenvectors with � < �14 in
course of the CG search. In such situations the intermediate diagonalizations
stabilize the convergence and undo the \level crossing".
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Fig. 1. Convergence of the Ritz functional for �1 (a) and �14 (b) of the operator Q

2

(cf. (30)) on the 83 �12 lattice (cf. table 1). Shown is the true error ���, the various

error estimates discussed in the text, and the decrease �� of the Ritz functional per

CG iteration. The vertical bars indicate where the intermediate diagonalizations

took place. The curves in (b) show the analogous quantities as labeled in (a).

4 Performance tests

4.1 The Wilson-Dirac operator in lattice QCD

We tested the accelerated CG method of sec. 2 for the case of the lattice Dirac
operator (D+m) with Wilson fermions of bare mass m in SU(2) gauge �elds
with periodic boundary conditions. On a four-dimensional lattice of sites x,
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(D +m) acts on a lattice spinor  as follows, 13 see e.g. [20],

[(D +m) ]�a(x) =

1

2�
 �a(x)� 1

2

4X
�=1

f (1l� 
�)�� U(x; x+ �)ab  
�b(x+ �)

+ (1l + 
�)�� U(x; x� �)ab  
�b(x� �)g : (29)

Here � = (2m+8)�1 denotes the hopping parameter and x� � is the nearest
neighbour site of x in ��-direction. The gauge �eld U(x; x� �) 2 SU(2) lives
on the links (x; x � �) of the lattice. U is generated by some Monte-Carlo
process, see e.g. [20]. On the rhs of eq. (29) an implicit summation over the
spinor indices (� = 1; : : : ; 4) and colour (b = 1; 2) is understood.

The operator which we consider is A = Q2 with

Q = 
5 (D +m) = (8 +m) : (30)

Thus A is hermitian and it is normalised such that its eigenvalues are be-
tween 0 and 1. Note that all steps of the CG minimisation and of the Jacobi
diagonalization are gauge covariant; hence, no gauge �xing is required. For
typical gauge �elds U the distribution of the eigenvalues of the operator Q2

is relatively smooth without exceptional gaps [6]. Our tests with A = Q2

are special, but we expect the numerical results to be comparable for other
operators which have a spectrum similar to Q2.

4.2 Numerical results

In table 1 we give an overview of some of our numerical tests. All gauge �elds at
�nite � (the coupling constant of the gauge part of the action, see e.g. [20]) were
generated in the presence of two 
avours of dynamical fermions. In the table
we also give the lowest eigenvalue and the average gap h4i16 among the lowest
16 eigenvalues. We required a relative accuracy of 10�4 according to any of the
three stopping criteria discussed in sec. 3.4; in practice �cycle is most e�cient
and hence gets relevant in most instances. On APE/Quadrics computers the
code runs with an e�ciency of above 35% of the peak performance. \Q1sec"
and \QH2sec" in the last row of the table refer to the actual time on a 8 and
256 node machine, respectively.

13The hermitian Euclidean 
-matrices 
�, � = 1; 2; 3; 4, satisfy the Cli�ord algebra

f
�; 
�g = 2���1l. Moreover, 
5 � 
1
2
3
4 anticommutes with all of them and


25 = 1l is the 4� 4 unit matrix.
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Table 1

Some of the lattice sizes and gauge con�gurations used in the tests. The upper part

refers to physical properties and the lower part summarizes the performance of the

algorithm. The last row refers to the actual computer time required for 8 eigenvalues

(cf. text).

lattice size 44 84 83 � 12 164

� 1:75 0:00 2:12 2:12

� 0:15 0:20 0:15 0:15

�1 6:513 � 10�3 1:592 � 10�3 8:098 � 10�4 7:703 � 10�4

h4i16 � 5 � 10�4 � 1 � 10�5 � 7 � 10�5 � 1 � 10�5

# eigenvalues # iterations for a relative accuracy of 10�4

8 690 4120 2130 4340

16 1260 5730 3540 7070

32 2040 10480 4810 13780

64 3110 15950 8640 19960

8 9 Q1sec 405 Q1sec 345 Q1sec 225 QH2sec

In addition to the lattices quoted in table 1, we studied random con�gurations
(� = 0) on various lattice sizes with � � 0:2, which is relatively close to
the critical value where (almost-)zero modes arise. In order to verify that
degeneracies are obtained correctly by the algorithm, we have studied trivial
gauge con�gurations U � 1l corresponding to free quarks or � = 1. In this
case every eigenvalue is at least eightfold degenerate, because the free Q2 is
diagonal in Dirac and colour indices. The parallelization of the algorithm when
treating independent systems on di�erent nodes has been investigated using
eight independent unquenched 63 � 12 lattices at � = 2:12, � = 0:15. In all
cases we found satisfactory performances.

A typical plot of the convergence of the Ritz functional and of the various
error estimates is shown in �g. 1 for the 83 � 12 lattice. Qualitatively the same
behaviour is found for the other lattices. The di�erences occur in the rate of
convergence.

For the CG minimisation of quadratic forms the asymptotic rate of conver-
gence is determined by the square root of the condition number of the Hessian
matrix. Similarly one expects that the asymptotic convergence for the pure
CG minimisation of the Ritz functional for the k-th eigenvalue is governed by
the ratio

ck =
�k+1 � �k
�max � �k

; (31)
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Fig. 2. Number of iterations in the pure CG algorithm (without intermediate diag-

onalization) required to compute �k with a relative accuracy of 10�4. The example

is taken on the 83 �12 lattice. Arrows indicate eigenvalues which required more than

4000 iterations.

which in the case A = Q2 at hand, where �k � �max � 1, reduces to ck �
�k+1 � �k � 4k. In �g. 2 we plot the number of iterations required for each
of the lowest eigenvalues in a typical example when running our algorithm
without intermediate diagonalizations (i.e. with 
 = 0 or N(k) = 1). The
number of iterations strongly 
uctuates and is indeed closely correlated with
the inverse square root of the gap to the next eigenvalue.

On the other hand, when the length of the CG cycles is chosen according
to (27) and the intermediate diagonalizations are performed, the convergence
becomes quite di�erent as shown in �g. 3. Most obvious is the fact that the
numbers of iterations required for the individual eigenvalues lie on relatively
smooth curves f(k; n) where n denotes the total number of eigenvalues which
were determined. Generally one observes that the eigenvalues with index k
near n take longest to converge, and that the number of iterations decreases
rapidly for eigenvalues with smaller index. When running with di�erent n the
behaviour of f(k; n) is rather similar and seems to depend essentially only
on the ratio k=n, i.e. on the relative position among the eigenvalues which
are calculated. The total number of iterations required for a given number of
eigenvalues roughly follows a linear increase with n, at least for moderately
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Fig. 3. Number of iterations in the accelerated CG algorithm required to compute

�k with a relative accuracy of 10
�4 when a total of n = 8, 16, 32, and 64 eigenvalues

is computed. The example is taken with the same gauge �eld as in �g. 2.

small n up to order 100.

Comparing the results of di�erent lattices and gauge �elds we �nd that with
intermediate diagonalizations the number of iterations required for conver-
gence is governed by the average h4in for the �rst n gaps. Empirically, the
number of iterations Nit(k) needed for the k-th eigenvalue to converge can
thus be described approximately (within about a factor of two) by

Nit(k) �
s
�max � �1

h4in
f

 
k

n

!
; (32)

where f depends somewhat on the overall properties of the spectrum, but is
almost identical for con�gurations with the same physical parameteres � and
�.

In terms of the total number of CG iterations for all eigenvalues we �nd
typically a gain of a factor of 4� 8 compared to running a pure CG algorithm
without intermediate diagonalizations (or restarts, which by themselves would
make the convergence only worse).
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Of course, the pure number of CG iterations is not the only factor which
determines the total computer time. The work required for the projections
by Q?

k grows linearly with k and therefore adds a component to the total
computer time which grows quadratically with n. If the state renormalizations
and projections (see also the comment at the end of sec. 3.1) are done every
10-th iteration, the average time spent for applying Q?

k�1 is about (k � 1)�
4% of the time of one CG iteration for the lowest eigenvalue. Due to the fact
that the higher eigenvalues (k<�n) are more expensive in terms of computer
time per iteration and that they take most iterations to converge, the gain
in computer time may be somewhat less than in the number of (Q2�vector)
multiplications.

The remarkable uniformity of the convergence, i.e. the fact that f(k; n) is a
relatively smooth function of k (�g. 3) compared to the individual numbers
of iterations needed without intermediate diagonalizations (�g. 2), is a clear
bene�t for SIMD parallelisation when several systems are treated simultane-
ously: It reduces the idle time while some of the processors have to wait until
the corresponding eigenvalue has converged for all systems.

As to the e�ect of introducing \dummy" eigenvalues, i.e. of increasing n by a
few eigenvalues without requiring the stopping criterion for them, it depends
on the size of the gap 4n for the last eigenvalue 14 . We observed that an
overall gain in the net number of iterations is only achieved if the gaps for the
additional dummy eigenvalues are comparable or larger than the gaps for the
last (few) eigenvalues which are treated fully. Usually there is no advantage
from introducing more than 5 � 10% of n as dummy eigenvalue (or at least
one for small n), but no general rule can be recommended. On the other hand,
if the information about the less precise dummy eigenvalues is of interest in a
particular application, their possible cost may be worthwhile in any case.

5 Conclusions

We presented an accelerated CG algorithm for the computation of the low-
lying eigenvalues of a hermitian operator A. This algorithm was tested for the
case of the squared Dirac operator A = Q2 in lattice gauge theory. The key
features of our algorithm are the following.

{ Rigorous error bounds can be derived just from the last CG iterate.
{ The correct multiplicities are detected.

14 It also depends on whether �cycle is used as a stoppng criterion, or whether one

uses only the Temple estimate, which is not applicable for the last eigenvalue (or

for more than just the last eigenvalue in case that degeneracies are present).
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{ Approximations to eigenvectors are obtained as a by-product.
{ The pure CG algorithm is speeded up through the intermediate diagonal-
izations by a factor of 4 � 8.

Comparing only the performance, the accelerated CG algorithm is still in-
ferior to the Lanczos method. With the studied con�gurations and numbers
of eigenvalues, the accelerated CG algorithm needs about 5 � 8 times more
(Q2�vector) multiplications than a Lanczos method for the (unsquared) op-
erator Q [6]. It is hard to say how this factor of 5 � 8 converts to CPU time,
because the two algorithms were implemented on di�erent computers, and one
also has to consider the work that has to be done apart from the (Q2�vector)
or (Q�vector) operations, respectively.

A time-consuming part in the CG algorithm are the repeated projections onto
the subspaces orthogonal to previously computed approximate eigenvectors.
However, in practice it is not necessary to perform these projections in every
iteration. This shows that the algorithm is numerically very stable. The accel-
erated CG algorithm can be implemented on (SIMD) parallel computers such
that even di�erent matrices can be treated simultaneously in an e�cient way.

Compared to a Lanczos method without any re-orthogonalisation [2] we need
more computer memory in order to store the approximate eigenvectors. How-
ever, in view of today's computer capabilities we do not consider this as a real
disadvantage. Also, in certain applications one needs the eigenvectors when
one is interested in the contribution of the low-lying eigenmodes to physical
observables. Computing the eigenvectors in a separate step (for instance by
inverse iteration) after the determination of the eigenvalues would be much
more expensive.

Despite a superiority of the Lanczos procedure when viewed from the CPU
time point-of-view (even if only a few eigenvalues are required), we consider the
algorithm presented here favorable. In particular, in the Lanczos algorithm one
does not have any rigorous estimate of the numerical accuracy and convergence
can only be estimated from experience [6]. Moreover, a Lanczos method does
not yield any information about degeneracies in the spectrum.
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