112 research outputs found

    Level-dependent interpolatory Hermite subdivision schemes and wavelets

    Full text link
    We study many properties of level-dependent Hermite subdivision, focusing on schemes preserving polynomial and exponential data. We specifically consider interpolatory schemes, which give rise to level-dependent multiresolution analyses through a prediction-correction approach. A result on the decay of the associated multiwavelet coefficients, corresponding to a uniformly continuous and differentiable function, is derived. It makes use of the approximation of any such function with a generalized Taylor formula expressed in terms of polynomials and exponentials

    Isogeometric Approximation of Variational Problems for Shells

    Get PDF
    The interaction of applied geometry and numerical simulation is a growing field in the interplay of com- puter graphics, computational mechanics and applied mathematics known as isogeometric analysis. In this thesis we apply and analyze Loop subdivision surfaces as isogeometric tool because they provide great flexibility in handling surfaces of arbitrary topology combined with higher order smoothness. Compared with finite element methods, isogeometric methods are known to require far less degrees of freedom for the modeling of complex surfaces but at the same time the assembly of the isogeo- metric matrices is much more time-consuming. Therefore, we implement the isogeometric subdivision method and analyze the experimental convergence behavior for different quadrature schemes. The mid-edge quadrature combines robustness and efficiency, where efficiency is additionally increased via lookup tables. For the first time, the lookup tables allow the simulation with control meshes of arbitrary closed connectivity without an initial subdivision step, i.e. triangles can have more than one vertex with valence different from six. Geometric evolution problems have many applications in material sciences, surface processing and modeling, bio-mechanics, elasticity and physical simulations. These evolution problems are often based on the gradient flow of a geometric energy depending on first and second fundamental forms of the surface. The isogeometric approach allows a conforming higher order spatial discretization of these geometric evolutions. To overcome a time-error dominated scheme, we combine higher order space and time discretizations, where the time discretization based on implicit Runge-Kutta methods. We prove that the energy diminishes in every time-step in the fully discrete setting under mild time-step restrictions which is the crucial characteristic of a gradient flow. The overall setup allows for a general type of fourth-order energies. Among others, we perform experiments for Willmore flow with respect to different metrics. In the last chapter of this thesis we apply the time-discrete geodesic calculus in shape space to the space of subdivision shells. By approximating the squared Riemannian distance by a suitable energy, this approach defines a discrete path energy for a consistent computation of geodesics, logarithm and exponential maps and parallel transport. As approximation we pick up an elastic shell energy, which measures the deformation of a shell by membrane and bending contributions of its mid-surface. Bézier curves are a fundamental tool in computer-aided geometric design. We extend these to the subdivision shell space by generalizing the de Casteljau algorithm. The evaluation of Bézier curves depends on all input data. To solve this problem, we introduce B-splines and cardinal splines in shape space by gluing together piecewise Bézier curves in a smooth way. We show examples of quadratic and cubic Bézier curves, quadratic and cubic B-splines as well as cardinal splines in subdivision shell space

    Numerical Methods in Shape Spaces and Optimal Branching Patterns

    Get PDF
    The contribution of this thesis is twofold. The main part deals with numerical methods in the context of shape space analysis, where the shape space at hand is considered as a Riemannian manifold. In detail, we apply and extend the time-discrete geodesic calculus (established by Rumpf and Wirth [WBRS11, RW15]) to the space of discrete shells, i.e. triangular meshes with fixed connectivity. The essential building block is a variational time-discretization of geodesic curves, which is based on a local approximation of the squared Riemannian distance on the manifold. On physical shape spaces this approximation can be derived e.g. from a dissimilarity measure. The dissimilarity measure between two shell surfaces can naturally be defined as an elastic deformation energy capturing both membrane and bending distortions. Combined with a non-conforming discretization of a physically sound thin shell model the time-discrete geodesic calculus applied to the space of discrete shells is shown to be suitable to solve important problems in computer graphics and animation. To extend the existing calculus, we introduce a generalized spline functional based on the covariant derivative along a curve in shape space whose minimizers can be considered as Riemannian splines. We establish a corresponding time-discrete functional that fits perfectly into the framework of Rumpf and Wirth, and prove this discretization to be consistent. Several numerical simulations reveal that the optimization of the spline functional—subject to appropriate constraints—can be used to solve the multiple interpolation problem in shape space, e.g. to realize keyframe animation. Based on the spline functional, we further develop a simple regression model which generalizes linear regression to nonlinear shape spaces. Numerical examples based on real data from anatomy and botany show the capability of the model. Finally, we apply the statistical analysis of elastic shape spaces presented by Rumpf and Wirth [RW09, RW11] to the space of discrete shells. To this end, we compute a Fréchet mean within a class of shapes bearing highly nonlinear variations and perform a principal component analysis with respect to the metric induced by the Hessian of an elastic shell energy. The last part of this thesis deals with the optimization of microstructures arising e.g. at austenite-martensite interfaces in shape memory alloys. For a corresponding scalar problem, Kohn and Müller [KM92, KM94] proved existence of a minimizer and provided a lower and an upper bound for the optimal energy. To establish the upper bound, they studied a particular branching pattern generated by mixing two different martensite phases. We perform a finite element simulation based on subdivision surfaces that suggests a topologically different class of branching patterns to represent an optimal microstructure. Based on these observations we derive a novel, low dimensional family of patterns and show—numerically and analytically—that our new branching pattern results in a significantly better upper energy bound
    • …
    corecore