761 research outputs found

    Henkin quantifiers and complete problems

    Full text link
    We analyze computational aspects of partially ordered quantification in first-order logic. Show that almost any non-linear quantifier, applied to quantifier-free first-order formula suffices to express an -complete predicate. The remaining non-linear quantifiers experiment exactly co- predicates.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26312/1/0000397.pd

    Changing a semantics: opportunism or courage?

    Full text link
    The generalized models for higher-order logics introduced by Leon Henkin, and their multiple offspring over the years, have become a standard tool in many areas of logic. Even so, discussion has persisted about their technical status, and perhaps even their conceptual legitimacy. This paper gives a systematic view of generalized model techniques, discusses what they mean in mathematical and philosophical terms, and presents a few technical themes and results about their role in algebraic representation, calibrating provability, lowering complexity, understanding fixed-point logics, and achieving set-theoretic absoluteness. We also show how thinking about Henkin's approach to semantics of logical systems in this generality can yield new results, dispelling the impression of adhocness. This paper is dedicated to Leon Henkin, a deep logician who has changed the way we all work, while also being an always open, modest, and encouraging colleague and friend.Comment: 27 pages. To appear in: The life and work of Leon Henkin: Essays on his contributions (Studies in Universal Logic) eds: Manzano, M., Sain, I. and Alonso, E., 201

    The complexity of independence-friendly fixpoint logic

    Get PDF
    Abstract. We study the complexity of model-checking for the fixpoint extension of Hintikka and Sandu’s independence-friendly logic. We show that this logic captures ExpTime; and by embedding PFP, we show that its combined complexity is ExpSpace-hard, and moreover the logic includes second order logic (on finite structures).

    The Broadest Necessity

    Get PDF
    In this paper the logic of broad necessity is explored. Definitions of what it means for one modality to be broader than another are formulated, and it is proven, in the context of higher-order logic, that there is a broadest necessity, settling one of the central questions of this investigation. It is shown, moreover, that it is possible to give a reductive analysis of this necessity in extensional language. This relates more generally to a conjecture that it is not possible to define intensional connectives from extensional notions. This conjecture is formulated precisely in higher-order logic, and concrete cases in which it fails are examined. The paper ends with a discussion of the logic of broad necessity. It is shown that the logic of broad necessity is a normal modal logic between S4 and Triv, and that it is consistent with a natural axiomatic system of higher-order logic that it is exactly S4. Some philosophical reasons to think that the logic of broad necessity does not include the S5 principle are given

    A Fragment of Dependence Logic Capturing Polynomial Time

    Get PDF
    In this paper we study the expressive power of Horn-formulae in dependence logic and show that they can express NP-complete problems. Therefore we define an even smaller fragment D-Horn* and show that over finite successor structures it captures the complexity class P of all sets decidable in polynomial time. Furthermore we study the question which of our results can ge generalized to the case of open formulae of D-Horn* and so-called downwards monotone polynomial time properties of teams

    Designing Normative Theories for Ethical and Legal Reasoning: LogiKEy Framework, Methodology, and Tool Support

    Full text link
    A framework and methodology---termed LogiKEy---for the design and engineering of ethical reasoners, normative theories and deontic logics is presented. The overall motivation is the development of suitable means for the control and governance of intelligent autonomous systems. LogiKEy's unifying formal framework is based on semantical embeddings of deontic logics, logic combinations and ethico-legal domain theories in expressive classic higher-order logic (HOL). This meta-logical approach enables the provision of powerful tool support in LogiKEy: off-the-shelf theorem provers and model finders for HOL are assisting the LogiKEy designer of ethical intelligent agents to flexibly experiment with underlying logics and their combinations, with ethico-legal domain theories, and with concrete examples---all at the same time. Continuous improvements of these off-the-shelf provers, without further ado, leverage the reasoning performance in LogiKEy. Case studies, in which the LogiKEy framework and methodology has been applied and tested, give evidence that HOL's undecidability often does not hinder efficient experimentation.Comment: 50 pages; 10 figure

    Boolean Dependence Logic and Partially-Ordered Connectives

    Full text link
    We introduce a new variant of dependence logic called Boolean dependence logic. In Boolean dependence logic dependence atoms are of the type =(x_1,...,x_n,\alpha), where \alpha is a Boolean variable. Intuitively, with Boolean dependence atoms one can express quantification of relations, while standard dependence atoms express quantification over functions. We compare the expressive power of Boolean dependence logic to dependence logic and first-order logic enriched by partially-ordered connectives. We show that the expressive power of Boolean dependence logic and dependence logic coincide. We define natural syntactic fragments of Boolean dependence logic and show that they coincide with the corresponding fragments of first-order logic enriched by partially-ordered connectives with respect to expressive power. We then show that the fragments form a strict hierarchy.Comment: 41 page
    corecore