

Edinburgh Research Explorer

The complexity of independence-friendly fixpoint logic

Citation for published version:
Bradfield, J & Kreutzer, S 2007, 'The complexity of independence-friendly fixpoint logic'. in S Bold, B Löwe,
T Räsch & J van Benthem (eds), Foundations of the Formal Sciences V, Infinite Games. Studies in Logic,
vol. 11, College Publications, London, pp. 39-62.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Preprint (usually an early version)

Published In:
Foundations of the Formal Sciences V, Infinite Games

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28969225?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.research.ed.ac.uk/portal/en/publications/the-complexity-of-independencefriendly-fixpoint-logic(2b92e3f8-122b-4451-aa09-ba18e572006e).html

The Complexity of

Independence-Friendly Fixpoint Logic

Julian Bradfield1 and Stephan Kreutzer2

1 Laboratory for Foundations of Computer Science, University of Edinburgh,
jcb@inf.ed.ac.uk

2 Institut für Informatik, Humboldt Universität, 10099 Berlin, Germany,
kreutzer@informatik.hu-berlin.de

Abstract. We study the complexity of model-checking for the fixpoint
extension of Hintikka and Sandu’s independence-friendly logic. We show
that this logic captures ExpTime; and by embedding PFP, we show
that its combined complexity is ExpSpace-hard, and moreover the logic
includes second order logic (on finite structures).

1 Introduction

In everyday life we often have to make choices in ignorance of the choices made
by others that might have affected our choice. With the popularity of the agent
paradigm, there is much theoretical and practical work on logics of knowledge
and belief in which such factors can be explicitly expressed in designing multi-
agent systems. However, ignorance is not the only reason for making independent
choices: in mathematical writing, it is not uncommon to assert the existence of
a value for some parameter uniformly in some earlier mentioned parameter.

Hintikka and Sandu [HiS96] introduced a logic, called Independence-friendly
(IF) logic, in which such independent choices can be formalized by independent
quantification. Some of the ideas go back some decades, for IF logic can also be
viewed as an alternative account of branching quantifiers (Henkin quantifiers) in
terms of games of imperfect information. Independent quantification is a subtle
concept, with many pitfalls for the unwary. It is also quite powerful: it has long
been known that it has existential second-order power. In previous work [BrF02],
the first author and Fröschle applied the idea of independent quantification to
modal logics, where it has natural links with the theory of true concurrency;
this prompted some consideration of fixpoint versions of IF modal logics, since
adding fixpoint operators is the easiest way to get a powerful temporal logic
from a simple modal logic. This led the first author to an initial investigation
[Bra03] of the fixpoint extension of first-order IF logic, which we call IF-LFP . It
turned out that fixpoint IF logic is not trivial to define, and appears to be very
expressive, with the interaction between fixpoints and independent quantification
giving a dramatic increase in expressive power. In [Bra03], only some fairly simple
complexity results were obtained; in this paper, we obtain much stronger results
about the model-checking complexity of IF-LFP . For the data complexity, we

show that not only is IF-LFP ExpTime-complete, but it captures ExpTime;
and for the combined complexity, we obtain an ExpSpacehardness result. This
latter result is obtained by an embedding of partial fixpoint logic into IF-LFP,
which shows that on finite structures IF-LFP even includes second-order logic,
a much stronger result than the first author previously conjectured.

2 Independence-Friendly Fixpoint Logic

2.1 Syntax

First of all, we state one important notational convention: to minimize the
number of parentheses, we take the scope of all quantifiers and fixpoint operators
to extend as far to the right as possible.

Now we define the syntax of first-order IF logic. Here we use the version
of Hodges [Hod97], and we confine the ‘independence-friendly’ operators to the
quantifiers; in the full logic, one can also specify conjunctions and disjunctions
that are independent, but these are not necessary for our purposes – their addi-
tion changes none of our results.

Definition 2.1. As for FOL, IF-FOL has proposition (P,Q etc.), relation (R,S
etc.), function (f, g etc.) and constant (a, b etc.) symbols, with given arities. It
also has individual variables v, x etc. We write x,v etc. for tuples of variables,
and similarly for tuples of other objects; we use concatenation of symbols to
denote concatenation of tuples with tuples or objects.

For formulae ϕ and terms t, the (meta-level) notations ϕ[x] and t[x] mean
that the free variables of ϕ or t are included in the variables x, without repetition.

The notions of ‘term’ and ‘free variable’ are as for FOL.
We assume equality = is in the language, and atomic formulae are defined as

usual by applying proposition or relation symbols to individual terms or tuples
of terms. The free variables of the formula R(t) are then those of t.

The compound formulae are given as follows:
Conjunction and disjunction. If ϕ[x] and ψ[y] are formulae, then (ϕ ∨

ψ)[z] and (ϕ ∧ ψ)[z] are formulae, where z is the union of x and y.
Quantifiers. If ϕ[y, x] is a formula, x a variable, and W a finite set of

variables, then (∀x/W.ϕ)[y] and (∃x/W.ϕ)[y] are formulae. If W is empty, we
write just ∀x. ϕ and ∃x. ϕ.

Game negation. If ϕ[x] is a formula, so is (∼ϕ)[x].
Flattening. If ϕ[x] is a formula, so is (↓ ϕ)[x].
Negation. ¬ϕ is an abbreviation for ∼ ↓ ϕ.

Definition 2.2. IF-FOL+ is the logic in which ∼, ↓ and ¬ are applied only to
atomic formulae.

In the rest of this paper, we shall be working with IF-FOL+, in which ∼
and ¬ merge, and ↓ has no effect. We shall therefore omit ∼ and ↓ from future
definitions, and take ¬ as primitive, which also allows a simpler semantics than
that for the full IF-FOL. Since we are proving lower bounds, the results apply
also to the logic with negations.

2.2 Traditional Semantics

In the independent quantifiers the intention is that W is the set of independent
variables, whose values the player is not allowed to know at this choice point:
thus the classical Henkin quantifier ∀x ∃y

∀u ∃v, where x and y are independent of
u and v, can be written as ∀x/?. ∃y/?. ∀u/{x, y}. ∃v/{x, y}. This notion of
independence is the reason for saying that IF logic is natural in mathematical
English: statements such as “For every x, and for all ǫ > 0, there exists δ,
depending only on ǫ . . .” can be transparently written as ∀x, ǫ > 0. ∃δ/x. . . . in
IF logic.

If one then plays the Hintikka evaluation game (otherwise known as the
model-checking game) with this additional condition, which can be formalized
by requiring strategies to be uniform in the ‘unknown’ variables, one gets a game
semantics of imperfect information, and defines a formula to be true iff Eloise
has a winning strategy.

These games are not determined, so it is not the case that Abelard has
a winning strategy iff the formula is not true. For example, ∀x

∃y
.x = y (or

∀x. ∃y/{x}. x = y) is untrue in any structure with more than one element, but
Abelard has no winning strategy.

An alternative interpretation of the logic, dating from the early work on
branching quantifiers, and one that is easier to handle mathematically in straight-
forward cases, is via Skolem functions with limited arguments. In FOL, the first
order sentence ∀x. ∃y. x = y, over some universe A, is converted via Skolem-
ization to the existential second-order sentence ∃f : A → A. ∀x. x = f(x).
In this procedure, the Skolem function always takes as arguments all the uni-
versal variables currently in scope. By allowing Skolem functions to take only
some of the arguments, we get a similar translation of IF-FOL+: for example,
∀x. ∃y/{x}. x = y becomes ∃f : 1 → A. ∀x. x = f(). It can be shown that these
two semantics are equivalent, in that an IF-FOL+ sentence is true in the game
semantics iff its Skolemization is true.

It is also well known that IF-FOL+ is equivalent to existential second-order
logic (in the cases where this matters, ‘second-order’ here means function quan-
tification rather than set quantification). This is because the Skolemization pro-
cess can be inverted: given a Σ1

1 sentence, it can be turned into an IF-FOL+

sentence (or equivalently, a sentence with Henkin quantifiers). We shall make
use of this procedure in later results. Details can be found in [Wal70,End70]
or in the full version of the paper, but here let us illustrate it by a standard
example that demonstrates the power of IF logic. Consider the sentence ‘there
is an injective endofunction that is not surjective’. This is true only in infinite
domains, and therefore not first-order expressible. It can be expressed directly
in Σ1

1 as

∃f. (∀x1, x2. f(x1) = f(x2) ⇒ x1 = x2) ∧ (∃c. ∀x. f(x) 6= c)

which for the sake of reducing complexity below we will simplify to

∃f. ∃c. ∀x1, x2. (f(x1) = f(x2) ⇒ x1 = x2) ∧ f(x1) 6= c.

The basic trick for talking about functions in IF-FOL is to replace ∃f. ∀x by
∀x. ∃y, so that y plays the role of f(x). In FOL, this works only if there is just one
application of f ; but in IF-FOL, we can do it for two (or more) applications of f :
we write ∀x1. ∃y1, and then we write an independent ∀x2/{x1, y1}. ∃y2/{x1, y1}.
Now in order to make sure that these two (xi, yi) pairings represent the same
f , the body of the translated formula is given a clause (x1 = x2) ⇒ (y1 = y2).
Applying this procedure to the Σ1

1 sentence above and optimizing a bit, we get

∀x1, x2. ∃y1/x2. ∃y2/x1. ∃c/{x1, x2}. (y1 = y2 ⇔ x1 = x2) ∧ y1 6= c.

2.3 Trump Semantics

The game semantics is how Hintikka and Sandu originally interpreted IF logic.
Later on, the trump semantics of Hodges [Hod97], with variants by others, gave
a Tarski-style semantics, equivalent to the original. This semantics is as follows:

Definition 2.3. Let a structure A be given, with constants, propositions and
relations interpreted in the usual way. A deal a for ϕ[x] or t[x] is an assignment
of an element of A to each variable in x. Given a deal a for a tuple of terms t[x],
let t(a) denote the tuple of elements obtained by evaluating the terms under the
deal a.

If ϕ[x] is a formula and W is a subset of the variables in x, two deals a and
b for ϕ are ≃W -equivalent (a ≃W b) iff they agree on the variables not in W . A
≃W -set is a non-empty set of pairwise ≃W -equivalent deals.

The denotation [[ϕ]] of a formula is a set T of trumps. If ϕ has n free variables,
then T ∈ ℘(℘(An)) – that is, a trump is a set of deals.

– If (R(t))[x] is atomic, then a non-empty setD of deals is a trump iff t(a) ∈ R
for every a ∈ D.

– D is a trump for (ϕ ∧ ψ)[x] iff D is a trump for ϕ[x] and D is a trump for
ψ[x].

– D is a trump for (ϕ ∨ ψ)[x] iff it is non-empty and there are trumps E of ϕ
and F of ψ such that every deal in D belongs either to E or F .

– D is a trump for (∀y/W.ψ)[x] iff the set {ab | a ∈ D, b ∈ A } is a trump for
ψ[x, y].

– D is a trump for (∃y/W.ψ)[x] iff there is a trump E for ψ[x, y] such that
for every ≃W -set F ⊆ D there is a b such that {ab | a ∈ F } ⊆ E.

– D is a trump for (¬R(t))[x] iff t(a) /∈ R for every a ∈ D.

A trump for ϕ is essentially a set of winning positions for the model-checking
game for ϕ, for a given uniform strategy, that is, a strategy where choices are
uniform in the ‘hidden’ variables. The most intricate part of the above definition
is the clause for ∃y/W.ψ: it says that a trump for ∃y/W.ψ is got by adding a
witness for y, uniform in the W -variables, to trumps for ψ.

It is easy to see that any subset of a trump is a trump. In the case of an
ordinary first-order ϕ(x), the set of trumps of ϕ is just the power set of the
set of tuples satisfying ϕ. To see how a more complex set of trumps emerges,

consider the following formula, which has x free: ∃y/{x}. x = y. Any singleton
set of deals is a trump, but no other set of deals is a trump. Thus we obtain that
∀x. ∃y/{x}. x = y has no trumps (unless the domain has only one element).

The strangeness of the trump definitions is partly to do with some more
subtle features of IF logics, that we do not here have space to discuss, but which
are considered in detail in Ahti-Veikko Pietarinen’s thesis [Pie00]. However, to
take one good example, raised by a referee, consider ϕ = ∃x. ∃y/{x}. x = y.
What are its trumps? As above, the trumps of ∃y/{x}. x = y are singleton sets
of deals. The only potential trump for ϕ is the set containing the empty deal
D = {〈〉}. Applying the definition, D is a trump for ϕ iff there is a singleton
deal set {a} for x such that there is a b such that {b} ⊆ {a}. The right hand
side is true – take b = a – so D is a trump. How come, if there is more than
one element in A? Surely we must choose y independently of x, and therefore
ϕ can’t be true? Not so: because the choices are both made by the same player
(Eloise), she can, as it were, make a uniform choice of y that, by ‘good luck’
agrees with her previous choice of x. Since she is not in the business of making
herself lose, she will always do so. In game-theoretic terms, this is the difference
between requiring a strategy to make uniform moves, and requiring a player to
choose a strategy uniformly. In fact Hintikka and Sandu avoided this problem
by only allowing the syntax to express quantifications independent in the other
player’s variables, which is in practice all one wishes to use in any case. Hodges
removed this restriction to make his semantics cleaner, exposing the curiosity
we have just described.

A sentence is said to be true if {〈〉} ∈ T (the empty deal is a trump set), and
false if {〈〉} ∈ C; this corresponds to Eloise or Abelard having a uniform winning
strategy. Otherwise, it is undetermined. Note that ‘false’ is reserved for a strong
sense of falsehood – undetermined sentences are also not true, and in the simple
cases where negation and flattening are not employed, an undetermined sentence
is as good as false.

2.4 IF-LFP

We now describe the addition of fixpoint operators to IF-FOL. This is slightly
intricate, although the normal intuitions for understanding fixpoint logics still
apply.

Definition 2.4. IF-LFP extends the syntax of IF-FOL as follows:

– There is a set Var = {X,Y, . . .} of fixpoint variables. Each variable X has
an arity ar(X).

– If X is a fixpoint variable, and t an ar(X)-vector of terms then X(t) is a
formula.

– Let ϕ be a formula with free fixpoint variable X . ϕ has free individual
variables x = 〈x1, . . . , xar(X)〉 for the elements of X , together with other
free individual variables z; let fvϕ(X) be the length of z. Now if t is a
sequence of ar(X) terms with free variables y, then (µX(x).ϕ)(t)[z,y] is a

formula; provided that ϕ is IF-FOL+. In this context, we write just fv(X)
for fvϕ(X).

– similarly for νX(x).ϕ.

To give the semantics of IF-LFP, we first define valuations for free fixpoint
variables, in the context of some IF-LFP formula.

Definition 2.5. A fixpoint valuation V maps each fixpoint variable X to a setV (X) ∈ ℘(℘(Aar(X)+fv(X))).
Let D be a non-empty set of deals for X(t)[x, z,y], where y are the free

variables of t not already among x, z. A deal d = acb ∈ D, where a, c, b are
the deals for x, z,y respectively, determines a deal d′ = t(d)c for X [x, z]. Let
D′ = { d′ | d ∈ D }. D is a trump for X(t) iff D′ ∈ V (X).

The intuition here is that a fixpoint variable needs to carry the trumps both
for the elements of the fixpoint and for any free variables, as we shall see below.
Then we define a suitable complete partial order on the range of valuations, which
will also be the range of denotations for formulae; it is simply the inclusion order
on trump sets.

Definition 2.6. If T1 and T2 are elements of ℘(℘(An)), define T1 � T2 iff T1 ⊆
T2.

This order gives the standard basic lemma for fixpoint logics:

Lemma 2.7. If ϕ(X)[x, z] is an IF-FOL+ formula and V is a fixpoint valua-
tion, the map on ℘(℘(Aar(X)+fv(X)) given by

T 7→ [[ϕ]]V [X:=T]

is monotone with respect to �; hence it has least and greatest fixpoints, con-
structible by iteration from the bottom and top elements of the set of denotations.

Thus we have the familiar definition of the µ operator:

Definition 2.8. [[µX(x).ϕ(X)[x, z]]] is the least fixpoint of the map on
℘(℘(Aar(X)+fv(X)) given by

T 7→ [[ϕ]]V [X:=T];

and [[νX(x).ϕ(x)[x, z]]] is the greatest fixpoint. µζX(x).ϕ means the ζth approx-
imant of µX(x).ϕ, defined recursively by µζX(x).ϕ = ϕ(

⋃

ξ<ζ µ
ξX(x).ϕ).

A distinctive feature of the definition, compared to the normal LFP defini-
tion, is the way that free variables are explicitly mentioned. Normally, one can
fix values for the free variables, and then compute the fixpoint, but because of
independent quantification this is not possible in the IF setting. For example,
consider the formula fragment

∀z. . . . µX(x). . . . ∨ ∃y/{z}. X(y)

The independent choice of y means that the trumps for the fixpoint depend on
the possible deals for z, not just a single deal.

2.5 Examples of IF-LFP

In order to give some human-readable examples of IF-LFP, we here reproduce
a section from [Bra03].

For convenience, we introduce the abbreviation ϕ ⇒ ψ for ψ ∨ ¬ϕ provided
that ϕ is atomic.

Let G = (V,E) be a directed graph. The usual LFP formula R(y, z)
def
=

(µX(x).z = x ∨ ∃w.E(x,w) ∧ X(w))(y) asserts that the vertex z is reachable
from y. Hence the formula ∀y. ∀z.R(y, z) asserts that G is strongly connected.
Now consider the IF-LFP formula

∀y. ∀z. (µX(x).z = x ∨ ∃w/{y, z}. E(x,w) ∧X(w))(y).

At first sight, one might think this asserts not only that every z is reachable from
every y, but that the path taken is independent of the choice of y and z. This
is true exactly if G has a directed Hamiltonian cycle, a much harder property
than being strongly connected.

Of course, the formula does not mean this, because the variable w is fresh
each time the fixpoint is unfolded. In the trump semantics, the denotation of the
fixpoint will include all the possible choice functions at each step, and hence all
possible combinations of choice functions. Thus the formula reduces to strong
connectivity.

It may be useful to look at the approximants of this formula in a little more
detail, to get some intuitions about the trump semantics. Considering just

H
def
= (µX(x).z = x ∨ ∃w/{y, z}. E(x,w) ∧X(w))[x, y, z],

we see that in computing each approximant, the calculation of [[∃w/{y, z}. . . .]]
involves generating a trump for every possible value of a choice function f :x 7→
w. This is a feature of the original trump semantics, and can be understood
by viewing it as a second-order semantics: just as the compositional Tarskian
semantics of ∃x. ϕ(x) involves computing all the witnesses for ϕ(x), so computing
the trumps of ∃x/{y}. ϕ involves computing all the Skolem functions; and unlike
the first-order case, it is necessary to work with functions (as IF can express
existential second-order logic). Consequently, the nth approximant includes all
states such that x→ f1(x) → f2f1(x) → . . .→ fn . . . f1(x) = z for any sequence
of successor-choosing functions fi. Thus we see that the cumulative effect is the
same as for a normal ∃w, and the independent choice has indeed not bought us
anything.

It is, however, possibleto produce a slightly more involved formula expressing
the Hamiltonian cycle property in this inductively defined way, by using the
standard trick for expressing functions in Henkin quantifier logics. We replace
the formula H by

∀s. ∃t/{y, z}. E(s, t)∧ (µX(x).x = z ∨
∀u. ∃v/{x, y, z, s, t}. (s = u⇒ t = v) ∧ (x = u⇒ X(v)))(y).

This works because the actual function f selecting a successor for every node is
made outside the fixpoint by ∀s. ∃t/{y, z}. E(s, t)∧ . . .; then inside the fixpoint,
a new choice function g is made so that X(g(x)), and g is constrained to be the
same as f by the clause (s = u ⇒ t = v). (The reader who is not familiar with
the IF/Henkin to existential second-order translation might wish to ponder why
∀s. ∃t/{y, z}. E(s, t)∧ µX(x).x = z ∨ (x = s⇒ X(t)) does not work.)

3 Second-Order Inductions and Independence-Friendly

Logics

It has been known from the early studies of Henkin quantifiers [Wal70,End70]
that existential second-order sentences can be transformed into sentences with
the Henkin quantifier, and thus into IF-FOL. A technique frequently used in our
results is the translation of existential second order inductions into IF-LFP.
For this we show that the translation of existential second-order logic into
independence-friendly logic can be extended to a translation of positive existen-
tial second-order inductions into independence-friendly fixpoint logic. Through-
out this paper we only consider finite structures. Therefore we only give the
translation for finite structures here.

We first give a formal definition of positive Σ1
1-inductive formulae.

Definition 3.1. An (n, k)-ary third-order variable R is a variable interpreted
by a set whose members are n-tuples of k-ary functions. Let, for some k, n < ω,R be a (n, k)-ary third-order variable. A formula ϕ(R, f1, . . . , fn) is Σ1

1-inductive
if it is built up by the usual formula building rules for Σ1

1 augmented by a rule
that allows the use of atoms Rf1 . . . fn, where the fi are k-ary function symbols,
provided that the variable R is only used positively in ϕ.

Σ1
1-inductive formulae ϕ can be used to define least fixpoint inductions in

the same way as first-order formulae with a free relation variable in which they
are positive are used to define fixpoint inductions. So we can define the stagesRα, α < ω, of the fixpoint induction in ϕ which ultimately lead to the least
fixpoint of the operator defined by the formula ϕ. We call a relation that is
obtained as the least fixpoint of a Σ1

1-inductive formula Σ1
1-inductive. Note, that

the Σ1
1-inductive relations are third-order objects, i.e. sets of functions.

We show next that any Σ1
1-inductive third-order relationR can be defined by

an IF-LFP-formula in the sense that there is a formula ϕ(R,x, y), positive in the
second-order variable R, such that the maximal trumps in the least fixpoint of
the operator defined by ϕ are precisely the graphs of the functions in R. For the
sake of simplicity, we only consider the case of (1, k)-ary inductions, i.e. where
the fixpoint is a set of functions.

An important concept used in the following proofs is the notion of functional
trumps ; and a technically useful concept is that of maximal trumps.

Definition 3.2. Let ϕ(x, y) be a formula. A trump T for ϕ is functional in x

and y, if for all pairs (a, b), (a′, b′) of deals in T we have b = b′ whenever a = a′.
T is maximal if there is no T ′) T that is a trump for ϕ.

Note that because any subset of a trump is a trump, the trumps of a formula
are determined by its maximal trumps. Of course, any subset of a functional
trump is functional.
Notation. In the following proofs we will frequently use a construction like

∀x/{x1, y1, . . . ,xn, yn}∃y/{x1, y1, . . . ,xn, yn}
(

(x = x1 → y = y1) ∧ ϕ
)

for some formula ϕ. We will abbreviate this by

∀x∃y clone(x1, y1; x2, y2 . . . ,xn, yn)ϕ.

and we will usually omit the list (x2, y2 . . . ,xn, yn) of other variables which ap-
pear in the independence sets of the quantifiers, assuming that all other variables
than the clones and originals are in that list. Essentially, this formula says that
the Skolem functions fy and fy1

chosen for y and y1, respectively, are the same.
The next lemma makes this precise and establishes some useful properties of the
clone construction.

Lemma 3.3. Let A be a structure and let x be a k-tuple of variables.

(i) Let ψ be a formula defined as ψ(x, y) := ∀x′∃y′clone(x, y)ψ′. Then the
trumps for ψ are precisely the sets of deals functional in x and y with some
Skolem function f , such that the deals (. . . ,x, f(x),x′, f(x′)) form a trump
for ψ′. In particular, if ψ′ is true, then the trumps of ψ are just the deals
functional in x and y.

(ii) Let ϕ(x′, y′) be a formula with only functional trumps and let ψ be defined
as ψ(x, y) := ∀x′∃y′clone(x, y) ϕ. Then the trumps for ψ and the trumps for
ϕ are the same, in the sense that for every trump T ′ ⊆ Ak+1 of ϕ there is a
trump T ⊆ Ak+1 of ψ such that an assignment of elements a to the variables
x′ and b to y′ is a deal in T ′ if, and only if, the corresponding assignment
of a to x and b to y is a deal in T and, conversely, for every trump T of ψ
there is a corresponding trump T ′ for ϕ.

Proof. We first prove Part (i) of the lemma. Following our notation, the formula
ψ is an abbreviation for

∀x′/{x, y}∃y′/{x, y}(x = x′ → y = y′) ∧ ψ′.

Towards a contradiction, suppose there was a non-functional trump T for ψ,
i.e. T contains deals (a, b) and (a, b′) for some a and b 6= b′. By the semantics of
universal quantifiers, this implies that there must be a trump for ∃y1/{x, y}(x =
x′ → y = y′) ∧ ψ′ containing (a, b,a) and (a, b′,a). But then, the set {(a, b,a),
(a, b′,a)} is a {x, y}-set (recall Definition 2.3). Hence, there must be trump
T ′ for (x = x′ → y = y′) ∧ ψ′ and an element c so that T ′ contains the deals
(a, b,a, c) and (a, b′,a, c). But this is impossible as not both b = c and b′ = c can
be true but obviously every deal (d, e,d′, e′) in a trump for (x = x′ → y = y′)
satisfies the condition that if d = d′ then also e = e′. Finally, if T is a functional
trump, then the corresponding T ′ must be a trump for ψ′, and so the deals
(a, b,a, b) must be a trump for ψ′.

Part (ii) of the lemma follows analogously. ⊓⊔

The next lemma shows that every formula in Σ1
1 is equivalent to a formula

in IF-LFP. The proof of the lemma follows easily from the work on Henkin-
quantifiers. However, some care has to be taken with free occurrences of function
variables.

Lemma 3.4. Let ϕ(f1, . . . , fn) be a Σ1
1-formula with free function variables

f1, . . . , fk. Then there is a formula ϕ̂(xf1
, yf1

, . . . ,xfk
, yfk

) ∈ IF-FOL such that
for every structure A a set T is a maximal trump for ϕ̂ if, and only if, there are
functions F1, . . . , Fk such that A |= ϕ(F1, . . . , Fk) and

T = {(a1, b1, . . . ,ak, bk) : Fi(ai) = bi for all 1 ≤ i ≤ k}.

We are now ready to prove the main theorem of this section.

Theorem 3.5. Let R be a (1, k)-ary third-order variable and let ϕ(R, f) be
a Σ1

1-inductive formula where f is a k-ary function symbol. Then there is a
formula ϕ̂(R,x, y) ∈ IF-LFP, where R is a k + 1-ary second-order variable that
only occurs positively in ϕ and x is a k-tuple of variables, such that the least
fixpoint R∞ of ϕ satisfies the following properties.

1. Every trump T in R∞ is functional.
2. Every maximal trump encodes the graph of a function inR∞ and, conversely,
3. for every function f ∈ R∞ there is a trump T in R∞ encoding the graph of

f .

Proof. Let ϕ(R, f) be as in the statement of the theorem. W.l.o.g. we assume
that ϕ has the form ϕ(R, f0) := ϕ0(f0) ∨ ∃f1 . . .∃fn

(

(
∧n

i=1Rfi) ∧ ϕ1

)

so thatR does not occur in ϕ0 or ϕ1. (See [EF99] for a proof of this normal form
for existential first-order inductions. The proof for this case is analogous.) The
formula ϕ is translated into a formula ϕ̂(R,x, y) ∈ IF-LFP defined as follows:

ϕ̂(R,x, y) := ∀x1.∃y1.clone(x, y)
(

ψ0(x, y) ∨ ψ1(R,x1, y1)
)

where
ψ0(x, y) := ∀xf0

∃yf0
clone(x, y) ϕ̂0(xf0

, yf0
)

and
ψ1(R,x1, y1) := ∀xf0

∃yf0
clone(x1, y1) ψ

′

1(xf0
, yf0

)

and

ψ′
1(R,xf0

, yf0
) := ∀xf1

∃yf1
. . . ∀xfn

∃yfn

∧n

i=1(∀x′∃y′clone(xfi
, yfi

) Rx′y′) ∧
ϕ̂1(xf0

, yf0
,xf1

, yf1
, . . . ,xfn

, yfn
).

Here ϕ̂0 and ϕ̂1 are the formulae obtained from ϕ0 and ϕ1 by applying Lemma
3.4. We claim that the formula ϕ̂ satisfies the properties stated in the theorem.
Let A be a structure with universe A. By Lemma 3.3(i), the trumps T for are
functional in x and y, with Skolem function g such that g satisfies ψ0 or ψ1.

The theorem now follows by showing via an induction on the ordinals α that
every maximal trump in Rα is the graph of a function in Rα and, conversely,
the graph of every function in Rα is a trump in Rα. ⊓⊔

4 Independence-Friendly vs. Partial Fixpoint Logic

By definition, independence-friendly fixpoint logic is a least fixpoint logic. How-
ever, contrary to the fixpoint logics usually considered in finite model theory,
here the fixpoints are not sets of elements but sets of trumps and therefore es-
sentially third-order objects. In particular, it is no longer guaranteed that any
fixpoint induction closes in polynomially many steps in the size of the structure
– to the contrary, it may take an exponential number of steps to close. We will
see below, that this greatly increases the expressive power of IF-LFP compared
to normal least fixpoint logics.

As a first step in this direction we relate independence-friendly fixpoint logic
to partial fixpoint logic. Partial fixpoint logic is an important logic in finite
model theory. Syntactically, PFP is defined as the extension of first-order logic
by formulae ψ := [pfpR,x ϕ](t), where R is a second-order variable of arity k, x a
k-tuple of variables, t a k-tuple of terms, and ϕ itself an arbitrary PFP-formula.
In particular, R may occur positive and negative in ϕ. On any finite structureA with universe A the formula ϕ defines a sequence Rα, α < ω, of sets defined
as R0 := ? and Rα+1 := {a : (A, Rα) |= ϕ(a)}. As there are no restrictions on
ϕ, this sequence need not reach a fixpoint. In this case, ψ is equivalent on A to
false. Otherwise, if the sequence becomes stationary and reaches a fixpoint R∞,
then for any tuple a ∈ Ak, A |= [pfpR,x ϕ](a) if, and only if, a ∈ R∞.

Among the various fixpoint logics commonly considered in finite model the-
ory, PFP is the most expressive subsuming logics such as LFP and IFP and, on
ordered structures, even second-order logic SO.

A central issue in finite model theory is to relate the expressive power of
logics to the computational complexity of classes of structures definable in the
logic. Of particular interest are so-called capturing results : A logic L captures
a complexity class C if every class of finite structures definable in L can be
decided in C and conversely, for every class C of finite structures which can be
decided in C there is a sentence ϕ ∈ L such that for all structures A, A |= ϕ if,
and only if, A ∈ C .

Capturing results are important as they provide logical characterisations of
complexity classes, i.e. characterisations independent of machine models and
time or space bounds. In particular, non-expressibility results on the logic trans-
fer directly into non-definability results on the complexity class. As such results
are notoriously hard to come by, capturing results provide an interesting alter-
native for proving non-definability of problems in a complexity class.

Much effort has been spent on capturing results and for all major complexity
classes such results have been found (see [EF99] for a summary). However, in
many cases it could only be shown that a logic captures a complexity class on
the class of ordered structures. As for PFP, it has been shown by Abiteboul
and Vianu [AV89], that PFP captures PSpace on the class of finite ordered
structures.

As every class of structures definable in second-order logic is decidable in
the polynomial time hierarchy, it follows immediately that PFP contains SO on
ordered structures. One feature that makes PFP so expressive is its ability to

define fixpoint inductions of exponential length in the size of the structure. We
show next that every formula of PFP is equivalent to one in IF-LFP. For this
we show that every partial fixed-point induction can be translated into a Σ1

1-
inductive definition which, by Theorem 3.5, is equivalent to a formula in IF-LFP.
Due to space restrictions we refrain from giving the full proof here and refer to
the full version of the paper.

Theorem 4.1. For every formula ϕ ∈ PFP there is an equivalent formula ψ ∈
IF-LFP.

We have already mentioned that pure independence-friendly logic is equiv-
alent to Σ1

1 where we can use an existential second-order quantifier to state
the existence of a linear order on the universe of a structure even on classes of
otherwise unordered structures. Thus the theorem above implies that IF-LFP
contains SO on all rather than just ordered structures.

Corollary 4.2. On finite structures, every formula of SO is equivalent to a
formula in IF-LFP.

In the next section we will derive some further corollaries of this theorem
concerning the model-checking complexity of IF-LFP.

5 Complexity of Independence-Friendly Fixpoint Logic

In this section we analyse the complexity of IF-LFP on finite structures, both
with respect to data and model-checking complexity. By data-complexity we
understand the complexity of deciding for a fixed formula ϕ ∈ IF-LFP and a
given structure A whether A |= ϕ. In particular, the input only consists of the
structure A. By model-checking we mean the problem of deciding for a given
finite structure A and formula ϕ ∈ IF-LFP whether A |= ϕ. Here, both ϕ and A
are part of input.

We begin our analysis with data-complexity. In [Bra03], the first author al-
ready noticed that any given formula of IF-LFP can be evaluated in time expo-
nential in the size of the structure. For, every fixpoint µR(x).ϕ can be evaluated
in time linear in the number of trumps for ϕ and therefore exponential in the
size of the structure.

Proposition 5.1. IF-LFP has exponential time data-complexity.

We aim at a much stronger result. Not only will we show that IF-LFP is
ExpTime-complete with respect to data-complexity but we will prove that it
actually captures ExpTime, i.e. every class of structures decidable by an ex-
ponential time Turing-machine can be defined in IF-LFP and vice versa every
class of structures definable in IF-LFP can be decided in deterministic exponen-
tial time. Again we refrain from giving the full proof here and refer to the full
paper.

Theorem 5.2. IF-LFP captures ExpTime.

Clearly, if a logic L captures a complexity class C, then the evaluation problem
of L must be C-complete with respect to data complexity. Thus we get the
following simple corollary.

Corollary 5.3. There exist formulae in IF-LFP with ExpTime-complete data-
complexity.

We continue our complexity analysis of IF-LFP with the study of its model-
checking complexity. For an upper bound, it is easily seen that for any given
structure A and formula ϕ the formula can be evaluated in A using space doubly
exponential in |ϕ| and exponential in |A|. For, every evaluation of a fixpoint only
needs enough space to store all possible trumps, and the number of trumps is

bounded by O(2A|ϕ|

).

Theorem 5.4. Every formula ϕ ∈ IF-LFP can be evaluated in a structure A in
space doubly exponential in |ϕ| and exponential in |A|.

The theorem gives an upper bound on the model checking complexity of
IF-LFP. We have seen in Section 4 above that every formula of PFP is equivalent
to one of IF-LFP. Further, the translation is polynomial in the size of the PFP-
formula. Consequently, model-checking for IF-LFP is at least as complex as it is
for PFP. As model-checking for PFP is known to be hard for exponential space
– in fact even complete for exponential space – we get the following theorem.

Theorem 5.5. The model-checking problem for IF-LFP is hard for exponential
space.

6 Conclusion

In this paper we studied the computational complexity of various problems re-
lated to IF-LFP. As we have seen, adding independence to least fixpoint logic
increases the expressive power and complexity significantly. Another indicator
for this is the translation of formulae of PFP to formulae of IF-LFP. This showed
that IF-LFP is even more expressive than second-order logic – unless, of course,
PSpace = ExpTime.

Looking at the various proofs given for the results, it becomes clear that
the common technique used in all proofs was to use independent quantification
to define functions and then show that these functions can be passed through
the fixpoint induction. This suggests that there might be a more general relation
between independence-friendly logic and second-order logic, namely that the two
logics are actually equivalent. Showing this, however, requires a careful analysis
of the role of negation in independence friendly logics and is far from obvious.
This is part of ongoing work.

7 Acknowledgements

Part of this work was done while the second author was a postdoctoral fellow
in Edinburgh supported by the EU Research and Training Network GAMES
(Games and Automata for Synthesis and Validation).

The authors thank anonymous referees for comments which have improved
the paper.

References

[AV89] S. Abiteboul and V. Vianu, Fixpoint extensions of first-order logic and
Datalog-like languages. Proc. 4th IEEE Symp. on Logic in Computer Science
(LICS), 71–79 (1989).

[Bra99] J. C. Bradfield, Fixpoints in arithmetic, transition systems and trees. The-
oretical Informatics and Applications, 33 341–356 (1999).

[Bra00] J. C. Bradfield, Independence: logics and concurrency, Proc. CSL 2000,
LNCS 1862 247–261 (2000).

[Bra03] J. C. Bradfield, Parity of imperfection, Proc. CSL 2003, LNCS 2803 72–85
(2003).

[BrF02] J. C. Bradfield and S. B. Fröschle, Independence-friendly modal logic and
true concurrency, Nordic J. Computing 9 102–117 (2002).

[EF99] H.-D. Ebbinghaus and J. Flum, Finite Model Theory, 2nd edition, Springer,
1999.

[End70] H. B. Enderton, Finite partially ordered quantifiers, Z. für Math. Logik u.
Grundl. Math. 16 393–397 (1970).

[Gra03] E. Grädel, Finite Model Theory and Descriptive Complexity, in Finite
Model Theory and Its Applications, Springer, 2005. See http://www-
mgi.informatik.rwth-aachen.de/Publications/pub/graedel/Gr-FMTbook.ps

[HiS96] J. Hintikka and G. Sandu, A revolution in logic?, Nordic J. Philos. Logic
1(2) 169–183 (1996).

[Hod97] W. Hodges, Compositional semantics for a language of imperfect informa-
tion, Int. J. IGPL 5(4), 539–563.

[Pie00] A. Pietarinen, Games logic plays. Informational independence in game-
theoretic semantics. D.Phil. thesis, Univ Sussex (2000).

[Wal70] W. J. Walkoe, Jr, Finite partially-ordered quantification. J. Symbolic Logic
35 535–555 (1970).

