304 research outputs found

    Ramsey equivalence

    Get PDF
    In the literature over the Ramsey-sentence approach to structural realism, there is often debate over whether structural realists can legitimately restrict the range of the second-order quantifiers, in order to avoid the Newman problem. In this paper, I argue that even if they are allowed to, it won’t help: even if the Ramsey sentence is interpreted using such restricted quantifiers, it is still an implausible candidate to capture a theory’s structural content. To do so, I use the following observation: if a Ramsey sentence did encode a theory’s structural content, then two theories would be structurally equivalent just in case they have logically equivalent Ramsey sentences. I then argue that this criterion for structural equivalence is implausible, even where frame or Henkin semantics are used

    Ramsey equivalence

    Get PDF
    In the literature over the Ramsey-sentence approach to structural realism, there is often debate over whether structural realists can legitimately restrict the range of the second-order quantifiers, in order to avoid the Newman problem. In this paper, I argue that even if they are allowed to, it won’t help: even if the Ramsey sentence is interpreted using such restricted quantifiers, it is still an implausible candidate to capture a theory’s structural content. To do so, I use the following observation: if a Ramsey sentence did encode a theory’s structural content, then two theories would be structurally equivalent just in case they have logically equivalent Ramsey sentences. I then argue that this criterion for structural equivalence is implausible, even where frame or Henkin semantics are used

    Ramsey equivalence

    Get PDF
    In the literature over the Ramsey-sentence approach to structural realism, there is often debate over whether structural realists can legitimately restrict the range of the second-order quantifiers, in order to avoid the Newman problem. In this paper, I argue that even if they are allowed to, it won’t help: even if the Ramsey sentence is interpreted using such restricted quantifiers, it is still an implausible candidate to capture a theory’s structural content. To do so, I use the following observation: if a Ramsey sentence did encode a theory’s structural content, then two theories would be structurally equivalent just in case they have logically equivalent Ramsey sentences. I then argue that this criterion for structural equivalence is implausible, even where frame or Henkin semantics are used

    Tarski's influence on computer science

    Full text link
    The influence of Alfred Tarski on computer science was indirect but significant in a number of directions and was in certain respects fundamental. Here surveyed is the work of Tarski on the decision procedure for algebra and geometry, the method of elimination of quantifiers, the semantics of formal languages, modeltheoretic preservation theorems, and algebraic logic; various connections of each with computer science are taken up

    Changing a semantics: opportunism or courage?

    Full text link
    The generalized models for higher-order logics introduced by Leon Henkin, and their multiple offspring over the years, have become a standard tool in many areas of logic. Even so, discussion has persisted about their technical status, and perhaps even their conceptual legitimacy. This paper gives a systematic view of generalized model techniques, discusses what they mean in mathematical and philosophical terms, and presents a few technical themes and results about their role in algebraic representation, calibrating provability, lowering complexity, understanding fixed-point logics, and achieving set-theoretic absoluteness. We also show how thinking about Henkin's approach to semantics of logical systems in this generality can yield new results, dispelling the impression of adhocness. This paper is dedicated to Leon Henkin, a deep logician who has changed the way we all work, while also being an always open, modest, and encouraging colleague and friend.Comment: 27 pages. To appear in: The life and work of Leon Henkin: Essays on his contributions (Studies in Universal Logic) eds: Manzano, M., Sain, I. and Alonso, E., 201

    Uniform Definability in Propositional Dependence Logic

    Full text link
    Both propositional dependence logic and inquisitive logic are expressively complete. As a consequence, every formula with intuitionistic disjunction or intuitionistic implication can be translated equivalently into a formula in the language of propositional dependence logic without these two connectives. We show that although such a (non-compositional) translation exists, neither intuitionistic disjunction nor intuitionistic implication is uniformly definable in propositional dependence logic

    Characterizing Quantifier Extensions of Dependence Logic

    Full text link
    We characterize the expressive power of extensions of Dependence Logic and Independence Logic by monotone generalized quantifiers in terms of quantifier extensions of existential second-order logic.Comment: 9 page

    Complete Axiomatizations of Fragments of Monadic Second-Order Logic on Finite Trees

    Full text link
    We consider a specific class of tree structures that can represent basic structures in linguistics and computer science such as XML documents, parse trees, and treebanks, namely, finite node-labeled sibling-ordered trees. We present axiomatizations of the monadic second-order logic (MSO), monadic transitive closure logic (FO(TC1)) and monadic least fixed-point logic (FO(LFP1)) theories of this class of structures. These logics can express important properties such as reachability. Using model-theoretic techniques, we show by a uniform argument that these axiomatizations are complete, i.e., each formula that is valid on all finite trees is provable using our axioms. As a backdrop to our positive results, on arbitrary structures, the logics that we study are known to be non-recursively axiomatizable
    • …
    corecore