7 research outputs found

    Introduction to Neutrosophic Restricted SuperHyperGraphs and Neutrosophic Restricted SuperHyperTrees and several of their properties

    Get PDF
    In this article, we first provide a modified definition of SuperHyperGraphs (SHG) and we call it Restricted SuperHyperGraphs (R-SHG). We then generalize the R-SHG to the neutrosophic graphs and then define the corresponding trees. In the following, we examine the Helly property for subtrees of SuperHyperGraphs

    Unique Perfect Phylogeny Characterizations via Uniquely Representable Chordal Graphs

    Full text link
    The perfect phylogeny problem is a classic problem in computational biology, where we seek an unrooted phylogeny that is compatible with a set of qualitative characters. Such a tree exists precisely when an intersection graph associated with the character set, called the partition intersection graph, can be triangulated using a restricted set of fill edges. Semple and Steel used the partition intersection graph to characterize when a character set has a unique perfect phylogeny. Bordewich, Huber, and Semple showed how to use the partition intersection graph to find a maximum compatible set of characters. In this paper, we build on these results, characterizing when a unique perfect phylogeny exists for a subset of partial characters. Our characterization is stated in terms of minimal triangulations of the partition intersection graph that are uniquely representable, also known as ur-chordal graphs. Our characterization is motivated by the structure of ur-chordal graphs, and the fact that the block structure of minimal triangulations is mirrored in the graph that has been triangulated

    Connectivity, tree-decompositions and unavoidable-minors

    Get PDF
    The results in this thesis are steps toward bridging the gap between the handful of exact structure theorems known for minor-closed classes of graphs, and the very general, yet wildly qualitative, Graph Minors Structure Theorem. This thesis introduces a refinement of the notion of tree-width. Tree-width is a measure of how “tree-like” a graph is. Essentially, a graph is tree-like if it can be decomposed across a collection of non-crossing vertex-separations into small pieces. In our variant, which we call k-tree-width, we require that the vertex-separations each have order at most k. Tree-width and branch-width are related parameters in a graph, and we introduce a branch-width-like variant for k-tree-width. We find a dual notion, in terms of tangles, for our branch-width parameter, and we prove a generalization of Robertson and Seymour’s Grid Theorem

    Collected Papers (on various scientific topics), Volume XIII

    Get PDF
    This thirteenth volume of Collected Papers is an eclectic tome of 88 papers in various fields of sciences, such as astronomy, biology, calculus, economics, education and administration, game theory, geometry, graph theory, information fusion, decision making, instantaneous physics, quantum physics, neutrosophic logic and set, non-Euclidean geometry, number theory, paradoxes, philosophy of science, scientific research methods, statistics, and others, structured in 17 chapters (Neutrosophic Theory and Applications; Neutrosophic Algebra; Fuzzy Soft Sets; Neutrosophic Sets; Hypersoft Sets; Neutrosophic Semigroups; Neutrosophic Graphs; Superhypergraphs; Plithogeny; Information Fusion; Statistics; Decision Making; Extenics; Instantaneous Physics; Paradoxism; Mathematica; Miscellanea), comprising 965 pages, published between 2005-2022 in different scientific journals, by the author alone or in collaboration with the following 110 co-authors (alphabetically ordered) from 26 countries: Abduallah Gamal, Sania Afzal, Firoz Ahmad, Muhammad Akram, Sheriful Alam, Ali Hamza, Ali H. M. Al-Obaidi, Madeleine Al-Tahan, Assia Bakali, Atiqe Ur Rahman, Sukanto Bhattacharya, Bilal Hadjadji, Robert N. Boyd, Willem K.M. Brauers, Umit Cali, Youcef Chibani, Victor Christianto, Chunxin Bo, Shyamal Dalapati, Mario Dalcín, Arup Kumar Das, Elham Davneshvar, Bijan Davvaz, Irfan Deli, Muhammet Deveci, Mamouni Dhar, R. Dhavaseelan, Balasubramanian Elavarasan, Sara Farooq, Haipeng Wang, Ugur Halden, Le Hoang Son, Hongnian Yu, Qays Hatem Imran, Mayas Ismail, Saeid Jafari, Jun Ye, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, Abdullah Kargın, Vasilios N. Katsikis, Nour Eldeen M. Khalifa, Madad Khan, M. Khoshnevisan, Tapan Kumar Roy, Pinaki Majumdar, Sreepurna Malakar, Masoud Ghods, Minghao Hu, Mingming Chen, Mohamed Abdel-Basset, Mohamed Talea, Mohammad Hamidi, Mohamed Loey, Mihnea Alexandru Moisescu, Muhammad Ihsan, Muhammad Saeed, Muhammad Shabir, Mumtaz Ali, Muzzamal Sitara, Nassim Abbas, Munazza Naz, Giorgio Nordo, Mani Parimala, Ion Pătrașcu, Gabrijela Popović, K. Porselvi, Surapati Pramanik, D. Preethi, Qiang Guo, Riad K. Al-Hamido, Zahra Rostami, Said Broumi, Saima Anis, Muzafer Saračević, Ganeshsree Selvachandran, Selvaraj Ganesan, Shammya Shananda Saha, Marayanagaraj Shanmugapriya, Songtao Shao, Sori Tjandrah Simbolon, Florentin Smarandache, Predrag S. Stanimirović, Dragiša Stanujkić, Raman Sundareswaran, Mehmet Șahin, Ovidiu-Ilie Șandru, Abdulkadir Șengür, Mohamed Talea, Ferhat Taș, Selçuk Topal, Alptekin Ulutaș, Ramalingam Udhayakumar, Yunita Umniyati, J. Vimala, Luige Vlădăreanu, Ştefan Vlăduţescu, Yaman Akbulut, Yanhui Guo, Yong Deng, You He, Young Bae Jun, Wangtao Yuan, Rong Xia, Xiaohong Zhang, Edmundas Kazimieras Zavadskas, Zayen Azzouz Omar, Xiaohong Zhang, Zhirou Ma.‬‬‬‬‬‬‬

    Helly Property for Subtrees

    Get PDF
    We prove, following [5, p. 92], that any family of subtrees of a finite tree satisfies the Helly property
    corecore