67 research outputs found

    Multicast Scheduling and Resource Allocation Algorithms for OFDMA-Based Systems: A Survey

    Get PDF
    Multicasting is emerging as an enabling technology for multimedia transmissions over wireless networks to support several groups of users with flexible quality of service (QoS)requirements. Although multicast has huge potential to push the limits of next generation communication systems; it is however one of the most challenging issues currently being addressed. In this survey, we explain multicast group formation and various forms of group rate determination approaches. We also provide a systematic review of recent channel-aware multicast scheduling and resource allocation (MSRA) techniques proposed for downlink multicast services in OFDMA based systems. We study these enabling algorithms, evaluate their core characteristics, limitations and classify them using multidimensional matrix. We cohesively review the algorithms in terms of their throughput maximization, fairness considerations, performance complexities, multi-antenna support, optimality and simplifying assumptions. We discuss existing standards employing multicasting and further highlight some potential research opportunities in multicast systems

    Caching Eliminates the Wireless Bottleneck in Video Aware Wireless Networks

    Get PDF

    Optimized traffic scheduling and routing in smart home networks

    Get PDF
    Home networks are evolving rapidly to include heterogeneous physical access and a large number of smart devices that generate different types of traffic with different distributions and different Quality of Service (QoS) requirements. Due to their particular architectures, which are very dense and very dynamic, the traditional one-pair-node shortest path solution is no longer efficient to handle inter-smart home networks (inter-SHNs) routing constraints such as delay, packet loss, and bandwidth in all-pair node heterogenous links. In addition, Current QoS-aware scheduling methods consider only the conventional priority metrics based on the IP Type of Service (ToS) field to make decisions for bandwidth allocation. Such priority based scheduling methods are not optimal to provide both QoS and Quality of Experience (QoE), especially for smart home applications, since higher priority traffic does not necessarily require higher stringent delay than lower-priority traffic. Moreover, current QoS-aware scheduling methods in the intra-smart home network (intra-SHN) do not consider concurrent traffic caused by the fluctuation of intra-SH network traffic distributions. Thus, the goal of this dissertation is to build an efficient heterogenous multi-constrained routing mechanism and an optimized traffic scheduling tool in order to maintain a cost-effective communication between all wired-wireless connected devices in inter-SHNs and to effectively process concurrent and non-concurrent traffic in intra-SHN. This will help Internet service providers (ISPs) and home user to enhance the overall QoS and QoE of their applications while maintaining a relevant communication in both inter-SHNs and intra-SHN. In order to meet this goal, three key issues are required to be addressed in our framework and are summarized as follows: i) how to build a cost-effective routing mechanism in heterogonous inter-SHNs ? ii) how to efficiently schedule the multi-sourced intra-SHN traffic based on both QoS and QoE ? and iii) how to design an optimized queuing model for intra-SHN concurrent traffics while considering their QoS requirements? As part of our contributions to solve the first problem highlighted above, we present an analytical framework for dynamically optimizing data flows in inter-SHNs using Software-defined networking (SDN). We formulate a QoS-based routing optimization problem as a constrained shortest path problem and then propose an optimized solution (QASDN) to determine minimal cost between all pairs of nodes in the network taking into account the different types of physical accesses and the network utilization patterns. To address the second issue and to solve the gaps between QoS and QoE, we propose a new queuing model for QoS-level Pair traffic with mixed arrival distributions in Smart Home network (QP-SH) to make a dynamic QoS-aware scheduling decision meeting delay requirements of all traffic while preserving their degrees of criticality. A new metric combining the ToS field and the maximum number of packets that can be processed by the system's service during the maximum required delay, is defined. Finally, as part of our contribution to address the third issue, we present an analytic model for a QoS-aware scheduling optimization of concurrent intra-SHN traffics with mixed arrival distributions and using probabilistic queuing disciplines. We formulate a hybrid QoS-aware scheduling problem for concurrent traffics in intra-SHN, propose an innovative queuing model (QC-SH) based on the auction economic model of game theory to provide a fair multiple access over different communication channels/ports, and design an applicable model to implement auction game on both sides; traffic sources and the home gateway, without changing the structure of the IEEE 802.11 standard. The results of our work offer SHNs more effective data transfer between all heterogenous connected devices with optimal resource utilization, a dynamic QoS/QoE-aware traffic processing in SHN as well as an innovative model for optimizing concurrent SHN traffic scheduling with enhanced fairness strategy. Numerical results show an improvement up to 90% for network resource utilization, 77% for bandwidth, 40% for scheduling with QoS and QoE and 57% for concurrent traffic scheduling delay using our proposed solutions compared with Traditional methods

    A Survey of Anticipatory Mobile Networking: Context-Based Classification, Prediction Methodologies, and Optimization Techniques

    Get PDF
    A growing trend for information technology is to not just react to changes, but anticipate them as much as possible. This paradigm made modern solutions, such as recommendation systems, a ubiquitous presence in today's digital transactions. Anticipatory networking extends the idea to communication technologies by studying patterns and periodicity in human behavior and network dynamics to optimize network performance. This survey collects and analyzes recent papers leveraging context information to forecast the evolution of network conditions and, in turn, to improve network performance. In particular, we identify the main prediction and optimization tools adopted in this body of work and link them with objectives and constraints of the typical applications and scenarios. Finally, we consider open challenges and research directions to make anticipatory networking part of next generation networks
    • …
    corecore