5 research outputs found

    Ore- and Fan-type heavy subgraphs for Hamiltonicity of 2-connected graphs

    Full text link
    Bedrossian characterized all pairs of forbidden subgraphs for a 2-connected graph to be Hamiltonian. Instead of forbidding some induced subgraphs, we relax the conditions for graphs to be Hamiltonian by restricting Ore- and Fan-type degree conditions on these induced subgraphs. Let GG be a graph on nn vertices and HH be an induced subgraph of GG. HH is called \emph{o}-heavy if there are two nonadjacent vertices in HH with degree sum at least nn, and is called ff-heavy if for every two vertices u,vV(H)u,v\in V(H), dH(u,v)=2d_{H}(u,v)=2 implies that max{d(u),d(v)}n/2\max\{d(u),d(v)\}\geq n/2. We say that GG is HH-\emph{o}-heavy (HH-\emph{f}-heavy) if every induced subgraph of GG isomorphic to HH is \emph{o}-heavy (\emph{f}-heavy). In this paper we characterize all connected graphs RR and SS other than P3P_3 such that every 2-connected RR-\emph{f}-heavy and SS-\emph{f}-heavy (RR-\emph{o}-heavy and SS-\emph{f}-heavy, RR-\emph{f}-heavy and SS-free) graph is Hamiltonian. Our results extend several previous theorems on forbidden subgraph conditions and heavy subgraph conditions for Hamiltonicity of 2-connected graphs.Comment: 21 pages, 2 figure

    Heavy Subgraph Conditions for Longest Cycles to Be Heavy in Graphs

    No full text
    Let G be a graph on n vertices. A vertex of G with degree at least n/2 is called a heavy vertex, and a cycle of G which contains all the heavy vertices of G is called a heavy cycle. In this note, we characterize graphs which contain no heavy cycles. For a given graph H, we say that G is H-heavy if every induced subgraph of G isomorphic to H contains two nonadjacent vertices with degree sum at least n. We find all the connected graphs S such that a 2-connected graph G being S-heavy implies any longest cycle of G is a heavy cycle

    Heavy Subgraph Conditions for Longest Cycles to Be Heavy in Graphs

    No full text
    Let G be a graph on n vertices. A vertex of G with degree at least n/2 is called a heavy vertex, and a cycle of G which contains all the heavy vertices of G is called a heavy cycle. In this note, we characterize graphs which contain no heavy cycles. For a given graph H, we say that G is H-heavy if every induced subgraph of G isomorphic to H contains two nonadjacent vertices with degree sum at least n. We find all the connected graphs S such that a 2-connected graph G being S-heavy implies any longest cycle of G is a heavy cycle

    Heavy subgraph conditions for longest cycles to be heavy in graphs

    No full text
    corecore