101,038 research outputs found

    Giant cell myocarditis masquerading as orbital myositis with a rapid, fulminant course necessitating mechanical support and heart transplantation.

    Get PDF
    Giant cell myocarditis (GCM), a rapidly progressive inflammation of the myocardium, is associated with fulminant heart failure, refractory ventricular arrhythmias, and conduction system abnormalities. Few case reports have noted orbital myositis as the initial clinical presentation. Our case demonstrates a unique presentation of GCM with only ocular symptoms, which unlike prior studies, rapidly progressed to heart failure, tachyarrhythmias, and conduction disease. Our case necessitated quick recognition and treatment with mechanical support making this the first known case of GCM with successful placement of biventricular assist devices and ultimately with heart transplantation

    Bundle Branch Reentrant Ventricular Tachycardia

    Get PDF
    Bundle branch reentrant (BBR) tachycardia is an uncommon form of ventricular tachycardia (VT) incorporating both bundle branches into the reentry circuit. The arrhythmia is usually seen in patients with an acquired heart disease and significant conduction system impairment, although patients with structurally normal heart have been described. Surface ECG in sinus rhythm (SR) characteristically shows intraventricular conduction defects. Patients typically present with presyncope, syncope or sudden death because of VT with fast rates frequently above 200 beats per minute. The QRS morphology during VT is a typical bundle branch block pattern, usually left bundle branch block, and may be identical to that in SR. Prolonged His-ventricular (H-V) interval in SR is found in the majority of patients with BBR VT, although some patients may have the H-V interval within normal limits. The diagnosis of BBR VT is based on electrophysiological findings and pacing maneuvers that prove participation of the His- Purkinje system in the tachycardia mechanism. Radiofrequency catheter ablation of a bundle branch can cure BBR VT and is currently regarded as the first line therapy. The technique of choice is ablation of the right bundle. The reported incidence of clinically significant conduction system impairment requiring implantation of a permanent pacemaker varies from 0% to 30%. Long-term outcome depends on the underlying cardiac disease. Patients with poor systolic left ventricular function are at risk of sudden death or death from progressive heart failure despite successful BBR VT ablation and should be considered for an implantable cardiovertor-defibrillator

    DC-DC Boost Converter with Constant Output Voltage for Grid Connected Photovoltaic Application System

    Get PDF
    The main purpose of this paper is to introduce an approach to design a DC-DC boost converter with constant output voltage for grid connected photovoltaic application system. The boost converter is designed to step up a fluctuating solar panel voltage to a higher constant DC voltage. It uses voltage feedback to keep the output voltage constant. To do so, a microcontroller is used as the heart of the control system which it tracks and provides pulse-width-modulation signal to control power electronic device in boost converter. The boost converter will be able to direct couple with grid-tied inverter for grid connected photovoltaic system. Simulations were performed to describe the proposed design. Experimental works were carried out with the designed boost converter which has a power rating of 100 W and 24 V output voltage operated in continuous conduction mode at 20 kHz switching frequency. The test results show that the proposed design exhibits a good performance

    High resolution 3-Dimensional imaging of the human cardiac conduction system from microanatomy to mathematical modeling

    Get PDF
    Cardiac arrhythmias and conduction disturbances are accompanied by structural remodelling of the specialised cardiomyocytes known collectively as the cardiac conduction system. Here, using contrast enhanced micro-computed tomography, we present, in attitudinally appropriate fashion, the first 3-dimensional representations of the cardiac conduction system within the intact human heart. We show that cardiomyocyte orientation can be extracted from these datasets at spatial resolutions approaching the single cell. These data show that commonly accepted anatomical representations are oversimplified. We have incorporated the high-resolution anatomical data into mathematical simulations of cardiac electrical depolarisation. The data presented should have multidisciplinary impact. Since the rate of depolarisation is dictated by cardiac microstructure, and the precise orientation of the cardiomyocytes, our data should improve the fidelity of mathematical models. By showing the precise 3-dimensional relationships between the cardiac conduction system and surrounding structures, we provide new insights relevant to valvar replacement surgery and ablation therapies. We also offer a practical method for investigation of remodelling in disease, and thus, virtual pathology and archiving. Such data presented as 3D images or 3D printed models, will inform discussions between medical teams and their patients, and aid the education of medical and surgical trainees

    Incorporating Inductances in Tissue-Scale Models of Cardiac Electrophysiology

    Get PDF
    In standard models of cardiac electrophysiology, including the bidomain and monodomain models, local perturbations can propagate at infinite speed. We address this unrealistic property by developing a hyperbolic bidomain model that is based on a generalization of Ohm's law with a Cattaneo-type model for the fluxes. Further, we obtain a hyperbolic monodomain model in the case that the intracellular and extracellular conductivity tensors have the same anisotropy ratio. In one spatial dimension, the hyperbolic monodomain model is equivalent to a cable model that includes axial inductances, and the relaxation times of the Cattaneo fluxes are strictly related to these inductances. A purely linear analysis shows that the inductances are negligible, but models of cardiac electrophysiology are highly nonlinear, and linear predictions may not capture the fully nonlinear dynamics. In fact, contrary to the linear analysis, we show that for simple nonlinear ionic models, an increase in conduction velocity is obtained for small and moderate values of the relaxation time. A similar behavior is also demonstrated with biophysically detailed ionic models. Using the Fenton-Karma model along with a low-order finite element spatial discretization, we numerically analyze differences between the standard monodomain model and the hyperbolic monodomain model. In a simple benchmark test, we show that the propagation of the action potential is strongly influenced by the alignment of the fibers with respect to the mesh in both the parabolic and hyperbolic models when using relatively coarse spatial discretizations. Accurate predictions of the conduction velocity require computational mesh spacings on the order of a single cardiac cell. We also compare the two formulations in the case of spiral break up and atrial fibrillation in an anatomically detailed model of the left atrium, and [...].Comment: 20 pages, 12 figure

    Cryothermal Energy Ablation Of Cardiac Arrhythmias 2005: State Of The Art

    Get PDF
    At the time of antiarrhythmic surgery, cryothermal energy application by a hand-held probe was used to complement dissections and resections and permanently abolish the arrhythmogenic substrate. Over the last decade, significant engineering advances allowed percutaneous cryoablation based on catheters, apparently not very different from standard radiofrequency ablation catheters. Cryothermal energy has peculiar characteristics. In fact, it allows testing in a reversible way the effects of energy application at higher temperature, before producing a permanent lesion at –75°C. Moreover, slow formation of the lesion allows timely discontinuation of the application, as soon as inadvertent modifications of normal atrioventricular conduction are observed during ablation in the proximity of atrioventricular node and His bundle, avoiding its permanent damage. Over the last years, percutaneous cryothermal ablation has been widely used for a variety of cardiac arrhythmias. From the data gathered, it is unlikely that cryoablation will replace standard ablation in unselected cases. Nevertheless, for the above mentioned peculiarities, cryothermal ablation has proved very effective and safe for ablation of arrhythmogenic substrates close to the normal conduction pathways, becoming the first choice method to ablate anteroseptal and midseptal accessory pathways. It can be also the best treatment for ablation of the slow pathway to abolish atrioventricular node reentrant tachycardia in pediatrics or when particular anatomy of the Koch’s triangle is observed. Cryothermal ablation of the pulmonary veins for atrial fibrillation, although longer than radiofrequency ablation, is not associated with pulmonary vein stenosis and is expected to be less thrombogenic; new catheter designs for cryothermal ablation of this challenging arrhythmia are to be tested to assess their efficacy and clinical usefulness
    corecore