215 research outputs found

    Arterial pulse wave modeling and analysis for vascular-age studies: a review from VascAgeNet

    Get PDF
    Aging; Arteriosclerosis; HemodynamicsEnvelliment; Arteriosclerosi; HemodinàmicaEnvejecimiento; Arteriosclerosis; HemodinámicaArterial pulse waves (PWs) such as blood pressure and photoplethysmogram (PPG) signals contain a wealth of information on the cardiovascular (CV) system that can be exploited to assess vascular age and identify individuals at elevated CV risk. We review the possibilities, limitations, complementarity, and differences of reduced-order, biophysical models of arterial PW propagation, as well as theoretical and empirical methods for analyzing PW signals and extracting clinically relevant information for vascular age assessment. We provide detailed mathematical derivations of these models and theoretical methods, showing how they are related to each other. Finally, we outline directions for future research to realize the potential of modeling and analysis of PW signals for accurate assessment of vascular age in both the clinic and in daily life.This article is based upon work from COST Action “Network for Research in Vascular Ageing” (VascAgeNet, CA18216), supported by COST (European Cooperation in Science and Technology, www.cost.eu). This work was supported by British Heart Foundation Grants PG/15/104/31913 (to J.A. and P.H.C.), FS/20/20/34626 (to P.H.C.), and AA/18/6/34223, PG/17/90/33415, SPG 2822621, and SP/F/21/150020 (to A.D.H.); Kaunas University of Technology Grant INP2022/16 (to B.P.); European Research Executive Agency, Marie-Sklodowska Curie Actions Individual Fellowship Grant 101038096 (to S.P.); Istinye University, BAP Project Grant 2019B1 (to S.P.); “la Caixa” Foundation Grant LCF/BQ/PR22/11920008 (to A.G.); and National Institute for Health and Care Research Grant AI AWARD02499 and EU Horizon 2020 Grant H2020 848109 (to A.D.H.)

    Arterial pulse wave modelling and analysis for vascular age studies: a review from VascAgeNet

    Get PDF
    Arterial pulse waves (PWs) such as blood pressure and photoplethysmogram (PPG) signals contain a wealth of information on the cardiovascular (CV) system that can be exploited to assess vascular age and identify individuals at elevated CV risk. We review the possibilities, limitations, complementarity, and differences of reduced-order, biophysical models of arterial PW propagation, as well as theoretical and empirical methods for analyzing PW signals and extracting clinically relevant information for vascular age assessment. We provide detailed mathematical derivations of these models and theoretical methods, showing how they are related to each other. Finally, we outline directions for future research to realize the potential of modeling and analysis of PW signals for accurate assessment of vascular age in both the clinic and in daily life

    A Review of Deep Learning Methods for Photoplethysmography Data

    Full text link
    Photoplethysmography (PPG) is a highly promising device due to its advantages in portability, user-friendly operation, and non-invasive capabilities to measure a wide range of physiological information. Recent advancements in deep learning have demonstrated remarkable outcomes by leveraging PPG signals for tasks related to personal health management and other multifaceted applications. In this review, we systematically reviewed papers that applied deep learning models to process PPG data between January 1st of 2017 and July 31st of 2023 from Google Scholar, PubMed and Dimensions. Each paper is analyzed from three key perspectives: tasks, models, and data. We finally extracted 193 papers where different deep learning frameworks were used to process PPG signals. Based on the tasks addressed in these papers, we categorized them into two major groups: medical-related, and non-medical-related. The medical-related tasks were further divided into seven subgroups, including blood pressure analysis, cardiovascular monitoring and diagnosis, sleep health, mental health, respiratory monitoring and analysis, blood glucose analysis, as well as others. The non-medical-related tasks were divided into four subgroups, which encompass signal processing, biometric identification, electrocardiogram reconstruction, and human activity recognition. In conclusion, significant progress has been made in the field of using deep learning methods to process PPG data recently. This allows for a more thorough exploration and utilization of the information contained in PPG signals. However, challenges remain, such as limited quantity and quality of publicly available databases, a lack of effective validation in real-world scenarios, and concerns about the interpretability, scalability, and complexity of deep learning models. Moreover, there are still emerging research areas that require further investigation

    Towards Non-Invasive and Continuous Blood Pressure Monitoring in Neonatal Intensive Care Using Artificial Intelligence: A Narrative Review

    Get PDF
    Preterm birth is a live birth that occurs before 37 completed weeks of pregnancy. Approximately 11% of babies are born preterm annually worldwide. Blood pressure (BP) monitoring is essential for managing the haemodynamic stability of preterm infants and impacts outcomes. However, current methods have many limitations associated, including invasive measurement, inaccuracies, and infection risk. In this narrative review, we find that artificial intelligence (AI) is a promising tool for the continuous measurement of BP in a neonatal cohort, based on data obtained from non-invasive sensors. Our findings highlight key sensing technologies, AI techniques, and model assessment metrics for BP sensing in the neonatal cohort. Moreover, our findings show that non-invasive BP monitoring leveraging AI has shown promise in adult cohorts but has not been broadly explored for neonatal cohorts. We conclude that there is a significant research opportunity in developing an innovative approach to provide a non-invasive alternative to existing continuous BP monitoring methods, which has the potential to improve outcomes for premature babies

    A Review of Atrial Fibrillation Detection Methods as a Service

    Get PDF
    Atrial Fibrillation (AF) is a common heart arrhythmia that often goes undetected, and even if it is detected, managing the condition may be challenging. In this paper, we review how the RR interval and Electrocardiogram (ECG) signals, incorporated into a monitoring system, can be useful to track AF events. Were such an automated system to be implemented, it could be used to help manage AF and thereby reduce patient morbidity and mortality. The main impetus behind the idea of developing a service is that a greater data volume analyzed can lead to better patient outcomes. Based on the literature review, which we present herein, we introduce the methods that can be used to detect AF efficiently and automatically via the RR interval and ECG signals. A cardiovascular disease monitoring service that incorporates one or multiple of these detection methods could extend event observation to all times, and could therefore become useful to establish any AF occurrence. The development of an automated and efficient method that monitors AF in real time would likely become a key component for meeting public health goals regarding the reduction of fatalities caused by the disease. Yet, at present, significant technological and regulatory obstacles remain, which prevent the development of any proposed system. Establishment of the scientific foundation for monitoring is important to provide effective service to patients and healthcare professionals
    • …
    corecore