77,356 research outputs found

    Headspace analysis of natural yoghurt using headspace solid phase microextraction : a thesis presented in partial fulfilment of the requirements for the degree of Master of Philosophy in Food Technology at Massey University (Turitea Campus), Palmerston North, New Zealand

    Get PDF
    The Solid Phase Microextraction (SPME) method was originally developed to extract volatile and semivolatile compounds from wastewater samples but has since been applied to flavour compounds in foods and beverages. Research using the HS-SPME in related areas such as cheese and skim milk powder has been carried out but, to date, no work has been done on yoghurt flavours. The main objective of this study was to devise a methodology for the Headspace Solid Phase Microextraction (HS-SPME) technique to investigate and quantify six flavour analytes in natural, set yoghurts made from recombined milk. The relevant literature was reviewed and from it, a research proposal for this work on yoghurts was drawn. The first step in analysing and quantifying the yoghurt volatiles was to set up a working methodology for the HS-SPME method. The 100 μm polydimethylsiloxane (PDMS) fibre was chosen along with 20 minutes being the optimum fibre adsorption time. General equipment, materials and methods used throughout this thesis are also detailed. The external standard (ES) method was used to calibrate the GC and quantify the analyte concentrations in this study. The internal standard (IS) method was not used as a quantitative tool in this study. Once the HS-SPME methodology had been set up for the analysis of yoghurts, the classical Static Headspace (SH) method was compared with the HS-SPME method for extraction efficiency. The results suggested that the two methods were complementary in that the SH method extracted the more volatile compounds (acetaldehyde, acetone and 2-butanone) whereas, the HS-SPME method extracted the semi- to non-volatile compounds (ethanol, diacetyl and acetoin) more readily. However, the HS-SPME was found to be the more sensitive and effective method of the two techniques tested. The next step in the thesis was to investigate the presence of the six analytes in milk and cultured yoghurt. The effects of the sample matrix, fat levels and incubation on the volatile concentrations were also examined. The results suggested that the six analytes were inherently present in milks but at low concentrations. No conclusive effects were found for the sample matrix, fat levels and incubation. However, it was evident that fermentation of the milks using bacterial starter cultures resulted in a large increase in some of the volatiles being investigated. Following this, the effects of fat levels, storage time and storage temperature on the six volatiles in yoghurts were examined. The results indicated that significant fat level effects were only seen for diacetyl and acetoin, while temperature effects were only observed for ethanol. In both trials, only general trends for the analytes concentrations were drawn because the data varied from day to day. The results suggested that most of the compounds decreased with time except for diacetyl, which seemed to increase. The final part of this study looked at applying the devised HS-SPME methodology to a series of commercial yoghurts as a preliminary trial, with a view to investigating a potential application for the HS-SPME method. Fourteen commercial yoghurts were analysed and the six analytes quantified. The data obtained was analysed using Principle Component Analysis (PCA), which divided the yoghurts into groups based on their analyte concentrations. From these groupings, eight yoghurts were selected and fresh samples were analysed using HS-SPME and PCA. This was carried out parallel with an untrained consumer panel, which had to distinguish differences between the yoghurts in a series of triangle tests by smelling the headspace on opening the yoghurt containers. The conclusions drawn were that, unlike the HS-SPME method with PCA, the average consumer could not differentiate the yoghurts based on smell alone. PCA also showed that the HS-SPME results obtained were fairly reproducible. In conclusion, the HS-SPME method was shown to be a useful analytical technique, which can be used to analyse and quantify flavour compounds in natural, set yoghurts. This area of investigation has a lot of scope, with the results from this study providing a basis or starting point for further investigations in this area. Future studies may lead to potential applications for the HS-SPME method, one of which may be quality control where correlation of sensory data with HS-SPME analytical data is required

    A fast ethanol assay to detect seed deterioration

    Get PDF
    The most common way to test seed quality is to use a simple and reliable but time- and space-consuming germination test. In this paper we present a fast and simple method to analyse cabbage seed deterioration by measuring ethanol production from partially imbibed seeds. The method uses a modified breath analyser and is simple compared to gas chromatographic or enzymatic procedures. A modified method using elevated temperatures (40°C instead of 20°C) shortened the assay time and improved its sensitivity. The analysis showed an inverse correlation between ethanol production and seed quality (e.g. the final percentages or speed of germination and the number of normal seedlings). The increase in ethanol production was observed when cabbage seeds were deteriorated by storage under ambient conditions or hot water treatments, both of which reduced the number of normal seedlings. Premature seeds produced more ethanol upon imbibition than mature seeds. Ethanol production occurred simultaneously with oxygen consumption, indicating that lack of oxygen is not the major trigger for ethanol production

    Impact of modified atmosphere and humidity packaging on the quality, off-odour development and volatiles of ‘Elsanta’ strawberries

    Get PDF
    Development of off-odours, as well as visual quality of packaged fresh produce plays a crucial role in consumer’s choice. In this context, this work investigated the odour profile, condensation, gas composition, and postharvest quality attributes of strawberries stored under modified atmosphere and humidity packaging at 5 °C for 14 days. The packages were fitted with fixed area (69, 126.5, and 195.5 cm2) of different permeable membranes (NatureFlex, Xtend, and Propafilm). No significant changes were detected on the measured physicochemical quality attributes of strawberries and mass loss was below 1.5% across the different packaging systems. Package modification/design had an influence on in-package water vapour condensation, gas composition, and accumulation of secondary volatile organic compounds (acetaldehyde, acetone, ethanol and ethyl acetate)

    Gas Concentration Measurements in Underground Waste Storage Tanks

    Get PDF
    Currently over 100 underground tanks at the Hanford facility in eastern Washington state are being used to store high-level radioactive waste. With plans for a long-term nuclear-waste repository in Nevada in place (though not yet approved), one promising use for these underground storage tanks is as a temporary waystation for waste destined for the Nevada repository. However, without a reasonable understanding of the chemical reactions going on within the tanks, transporting waste in and out of the tanks has been deemed to be unsafe. One hazard associated with such storage mechanisms is explosion of flammable gases produced within the tank. Within many of the storage tanks is a sludge layer. This layer, which is a mixture of liquid and solids, contains most of the radioactive material. Radioactive decay and its associated heat can produce several flammable materials within this layer. Two components of particular concern are hydrogen (H2) and nitrous oxide (N2O), since they are highly volatile in the gaseous phase. Though the tanks have either forced or natural convection systems to vent these gases, the possibility of an explosion still exists. Measurements of these gases are taken in several ways. Continuous measurements are taken in the headspace, which is the layer between the tank ceiling and the liquid (supernatant) or sludge layer below. In tanks where a supernatant layer sits atop the sludge layer, there are often rollovers or gas release events (GREs), where a large chunk of sludge, after attaining a certain void fraction, becomes buoyant, rising through the supernatant and releasing its associated gas composition to the headspace. Such changes trigger a sensor, and thus measurements are also taken at that time. Lastly, a retained gas sample (RGS) can be taken from either the supernatant or sludge layer. Such a core sample is quite expensive, but can yield crucial data about the way gases are being produced in the sludge and convected through the supernatant. Unfortunately, the measurements from these three populations do not seem to match. In particular, the ratio r = [N2O]/[H2] varies from population to population. r also varies from tank to tank, but this can more readily be explained in terms of the waste composition of each tank. Since H2 is more volatile than N2O (and since there are more sources of oxygen in the headspace), lower values of r correspond to more hazardous situations. This variance in r is troubling, since we need to be able to explain why certain values of r are lower (and hence more dangerous) in certain areas of the tank. In this report we examine the data from three tanks. We first verify that the differences in r among populations is significant. We then postulate several mechanisms which could explain such a difference

    Speciation without chromatography: Part I. Determination of tributyltin in aqueous samples by chloride generation, headspace solid-phase microextraction and inductively coupled plasma time of flight mass spectrometry

    Get PDF
    An analytical procedure was developed for the determination of tributyltin in aqueous samples. The relatively high volatility of the organometal halide species confers suitability for their headspace sampling from the vapour phase above natural waters or leached solid samples. Tributyltin was collected from the sample headspace above various chloride-containing matrices, including HCl, sodium chloride solution and sea-water, by passive sampling using a polydimethylsiloxane/divinylbenzene (PDMS/DVB)-coated solid-phase microextraction (SPME) fiber. Inductively coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) was used for detection following thermal desorption of analytes from the fiber. A detection limit of 5.8 pg ml–1(as tin) was realized in aqueous samples. Method validation was achieved using NRCC PACS-2 (Sediment) certified reference material, for which reasonable agreement between certified and measured values for tributyltin content was obtained

    Isotopic evidence for biogenic molecular hydrogen production in the Atlantic Ocean

    Get PDF
    Oceans are a net source of molecular hydrogen (H2) to the atmosphere. The production of marine H2 is assumed to be mainly biological by N2 fixation, but photochemical pathways are also discussed. We present measurements of mole fraction and isotopic composition of dissolved and atmospheric H2 from the southern and northern Atlantic between 2008 and 2010. In total almost 400 samples were taken during five cruises along a transect between Punta Arenas (Chile) and Bremerhaven (Germany), as well as at the coast of Mauretania. The isotopic source signatures of dissolved H2 extracted from surface water are highly deuterium-depleted and correlate negatively with temperature, showing δD values of (−629 ± 54) ‰ for water temperatures at (27 ± 3) °C and (−249 ± 88) ‰ below (19 ± 1) °C. The results for warmer water masses are consistent with biological production of H2. This is the first time that marine H2 excess has been directly attributed to biological production by isotope measurements. However, the isotope values obtained in the colder water masses indicate that beside possible biological production a significant different source should be considered. The atmospheric measurements show distinct differences between both hemispheres as well as between seasons. Results from the global chemistry transport model TM5 reproduce the measured H2 mole fractions and isotopic composition well. The climatological global oceanic emissions from the GEMS database are in line with our data and previously published flux calculations. The good agreement between measurements and model results demonstrates that both the magnitude and the isotopic signature of the main components of the marine H2 cycle are in general adequately represented in current atmospheric models despite a proposed source different from biological production or a substantial underestimation of nitrogen fixation by several authors

    mHealth: providing a mindfulness app for women with chronic pelvic pain in gynaecology outpatient clinics: qualitative data analysis of user experience and lessons learnt

    Get PDF
    OBJECTIVES: To determine whether a pre-existing smartphone app to teach mindfulness meditation is acceptable to women with chronic pelvic pain (CPP) and can be integrated into clinical practice within the National Health Service (NHS) CPP pathways, and to inform the design of a potential randomised clinical trial. DESIGN: A prestudy patient and public involvement (PPI) group to collect feedback on the acceptability of the existing app and study design was followed by a three-arm randomised feasibility trial. In addition, we undertook interviews and focus groups with patients and staff to explore app usability and acceptability. We also obtained participant comments on the research process, such as acceptability of the study questionnaires. SETTING: Two gynaecology clinics within Barts Health NHS, London, UK. PARTICIPANTS: Patients with CPP lasting ≥6 months with access to smartphone or personal computer and understanding of basic English. INTERVENTION: The intervention was mindfulness meditation content plus additional pain module delivered by a smartphone app. Active controls received muscle relaxation content from the same app. Passive (waiting list) controls received usual care. MAIN OUTCOME MEASURES: Themes on user feedback, app usability and integration, and reasons for using/not using the app. RESULTS: The use of the app was low in both active groups. Patients in the prestudy PPI group, all volunteers, were enthusiastic about the app (convenience, content, portability, flexibility, ease of use). Women contributing to the interview or focus group data (n=14), from a 'real world' clinic (some not regular app users), were less positive, citing as barriers lack of opportunities/motivation to use the app and lack of familiarity and capabilities with technology. Staff (n=7) were concerned about the potential need for extra support for them and for the patients, and considered the app needed organisational backing and peer acceptance. CONCLUSION: The opinions of prestudy PPI volunteers meeting in their private time may not represent those of patients recruited at a routine clinic appointment. It may be more successful to codesign/codevelop an app with typical users than to adapt existing apps for use in real-world clinical populations. TRIAL REGISTRATION NUMBER: ISRCTN10925965

    Honey volatiles as a fingerprint for botanical origin: a review on their occurrence on monofloral honeys

    Get PDF
    Honeys have specific organoleptic characteristics, with nutritional and health benefits, being highly appreciated by consumers, not only in food but also in the pharmaceutical and cosmetic industries. Honey composition varies between regions according to the surrounding flora, enabling its characterization by source or type. Monofloral honeys may reach higher market values than multifloral ones. Honey's aroma is very specific, resulting from the combination of volatile compounds present in low concentrations. The authentication of honey's complex matrix, according to its botanical and/or geographical origin, represents a challenge nowadays, due to the different sorts of adulteration that may occur, leading to the search for reliable marker compounds for the different monofloral honeys. The existing information on the volatiles of monofloral honeys is scarce and disperse. In this review, twenty monofloral honeys and honeydews, from acacia, buckwheat, chestnut, clover, cotton, dandelion, eucalyptus, fir tree, heather, lavender, lime tree, orange, pine, rape, raspberry, rhododendron, rosemary, strawberry tree, sunflower and thyme, were selected for volatile comparison purposes. Taking into consideration the country of origin, the technique of isolation and analysis, the five main volatiles from each of the honeys are compared. Whereas some compounds were found in several types of monofloral honey, and thus not considered good volatile markers, some monofloral honeys revealed characteristic volatile compounds independently of their provenance.Funding: SFRH/BD/117013/2016, UID/AGR/00690/2019, UID/AMB/50017/2019, MED (UIDB/05183/2020), FEDER, PT2020 PACompete 2020info:eu-repo/semantics/publishedVersio

    Development of Head Space Sorptive Extraction Method for the Determination of Volatile Compounds in Beer and Comparison with Stir Bar Sorptive Extraction

    Get PDF
    A headspace sorptive extraction method coupled with gas chromatography-mass spectrometry (HSSE-GC-MS) was developed for the determination of 37 volatile compounds in beer. After optimization of the extraction conditions, the best conditions for the analysis were stirring at 1000 rpm for 180 min, using an 8-mL sample with 25% NaCl. The analytical method provided excellent linearity values (R-2 > 0.99) for the calibration of all the compounds studied, with the detection and quantification limits obtained being low enough for the determination of the compounds in the beers studied. When studying the repeatability of the method, it proved to be quite accurate, since RSD% values lower than 20% were obtained for all the compounds. On the other hand, the recovery study was successfully concluded, resulting in acceptable values for most of the compounds (80-120%). The optimised method was successfully applied to real beer samples of different types (ale, lager, stout and wheat). Finally, an analytical comparison of the optimised HSSE method, with a previously developed and validated stir bar sorptive extraction (SBSE) method was performed, obtaining similar concentration values by both methods for most compounds
    corecore