17 research outputs found

    VIENA2: A Driving Anticipation Dataset

    Full text link
    Action anticipation is critical in scenarios where one needs to react before the action is finalized. This is, for instance, the case in automated driving, where a car needs to, e.g., avoid hitting pedestrians and respect traffic lights. While solutions have been proposed to tackle subsets of the driving anticipation tasks, by making use of diverse, task-specific sensors, there is no single dataset or framework that addresses them all in a consistent manner. In this paper, we therefore introduce a new, large-scale dataset, called VIENA2, covering 5 generic driving scenarios, with a total of 25 distinct action classes. It contains more than 15K full HD, 5s long videos acquired in various driving conditions, weathers, daytimes and environments, complemented with a common and realistic set of sensor measurements. This amounts to more than 2.25M frames, each annotated with an action label, corresponding to 600 samples per action class. We discuss our data acquisition strategy and the statistics of our dataset, and benchmark state-of-the-art action anticipation techniques, including a new multi-modal LSTM architecture with an effective loss function for action anticipation in driving scenarios.Comment: Accepted in ACCV 201

    Driver Distraction Identification with an Ensemble of Convolutional Neural Networks

    Get PDF
    The World Health Organization (WHO) reported 1.25 million deaths yearly due to road traffic accidents worldwide and the number has been continuously increasing over the last few years. Nearly fifth of these accidents are caused by distracted drivers. Existing work of distracted driver detection is concerned with a small set of distractions (mostly, cell phone usage). Unreliable ad-hoc methods are often used.In this paper, we present the first publicly available dataset for driver distraction identification with more distraction postures than existing alternatives. In addition, we propose a reliable deep learning-based solution that achieves a 90% accuracy. The system consists of a genetically-weighted ensemble of convolutional neural networks, we show that a weighted ensemble of classifiers using a genetic algorithm yields in a better classification confidence. We also study the effect of different visual elements in distraction detection by means of face and hand localizations, and skin segmentation. Finally, we present a thinned version of our ensemble that could achieve 84.64% classification accuracy and operate in a real-time environment.Comment: arXiv admin note: substantial text overlap with arXiv:1706.0949

    A Fuzzy-Logic Approach to Dynamic Bayesian Severity Level Classification of Driver Distraction Using Image Recognition

    Get PDF
    open access articleDetecting and classifying driver distractions is crucial in the prevention of road accidents. These distractions impact both driver behavior and vehicle dynamics. Knowing the degree of driver distraction can aid in accident prevention techniques, including transitioning of control to a level 4 semi- autonomous vehicle, when a high distraction severity level is reached. Thus, enhancement of Advanced Driving Assistance Systems (ADAS) is a critical component in the safety of vehicle drivers and other road users. In this paper, a new methodology is introduced, using an expert knowledge rule system to predict the severity of distraction in a contiguous set of video frames using the Naturalistic Driving American University of Cairo (AUC) Distraction Dataset. A multi-class distraction system comprises the face orientation, drivers’ activities, hands and previous driver distraction, a severity classification model is developed as a discrete dynamic Bayesian (DDB). Furthermore, a Mamdani-based fuzzy system was implemented to detect multi- class of distractions into a severity level of safe, careless or dangerous driving. Thus, if a high level of severity is reached the semi-autonomous vehicle will take control. The result further shows that some instances of driver’s distraction may quickly transition from a careless to dangerous driving in a multi-class distraction context

    Beyond just keeping hands on the wheel: Towards visual interpretation of driver hand motion patterns

    Full text link
    Abstract — Observing hand activity in the car provides a rich set of patterns relating to vehicle maneuvering, secondary tasks, driver distraction, and driver intent inference. This work strives to develop a vision-based framework for analyzing such patterns in real-time. First, hands are detected and tracked from a monocular camera. This provides position information of the left and right hands with no intrusion over long, naturalistic drives. Second, the motion trajectories are studied in settings of activity recognition, prediction, and higher-level semantic categorization. I

    Adaptive User-Centered Multimodal Interaction towards Reliable and Trusted Automotive Interfaces

    Full text link
    With the recently increasing capabilities of modern vehicles, novel approaches for interaction emerged that go beyond traditional touch-based and voice command approaches. Therefore, hand gestures, head pose, eye gaze, and speech have been extensively investigated in automotive applications for object selection and referencing. Despite these significant advances, existing approaches mostly employ a one-model-fits-all approach unsuitable for varying user behavior and individual differences. Moreover, current referencing approaches either consider these modalities separately or focus on a stationary situation, whereas the situation in a moving vehicle is highly dynamic and subject to safety-critical constraints. In this paper, I propose a research plan for a user-centered adaptive multimodal fusion approach for referencing external objects from a moving vehicle. The proposed plan aims to provide an open-source framework for user-centered adaptation and personalization using user observations and heuristics, multimodal fusion, clustering, transfer-of-learning for model adaptation, and continuous learning, moving towards trusted human-centered artificial intelligence

    Looking for a better fit? An Incremental Learning Multimodal Object Referencing Framework adapting to Individual Drivers

    Full text link
    The rapid advancement of the automotive industry towards automated and semi-automated vehicles has rendered traditional methods of vehicle interaction, such as touch-based and voice command systems, inadequate for a widening range of non-driving related tasks, such as referencing objects outside of the vehicle. Consequently, research has shifted toward gestural input (e.g., hand, gaze, and head pose gestures) as a more suitable mode of interaction during driving. However, due to the dynamic nature of driving and individual variation, there are significant differences in drivers' gestural input performance. While, in theory, this inherent variability could be moderated by substantial data-driven machine learning models, prevalent methodologies lean towards constrained, single-instance trained models for object referencing. These models show a limited capacity to continuously adapt to the divergent behaviors of individual drivers and the variety of driving scenarios. To address this, we propose \textit{IcRegress}, a novel regression-based incremental learning approach that adapts to changing behavior and the unique characteristics of drivers engaged in the dual task of driving and referencing objects. We suggest a more personalized and adaptable solution for multimodal gestural interfaces, employing continuous lifelong learning to enhance driver experience, safety, and convenience. Our approach was evaluated using an outside-the-vehicle object referencing use case, highlighting the superiority of the incremental learning models adapted over a single trained model across various driver traits such as handedness, driving experience, and numerous driving conditions. Finally, to facilitate reproducibility, ease deployment, and promote further research, we offer our approach as an open-source framework at \url{https://github.com/amrgomaaelhady/IcRegress}.Comment: Accepted for publication in the Proceedings of the 29th International Conference on Intelligent User Interfaces (IUI'24), March 18--21, 2024, in Greenville, SC, US
    corecore