6 research outputs found

    CAUSE: Learning Granger Causality from Event Sequences using Attribution Methods

    Get PDF
    We study the problem of learning Granger causality between event types from asynchronous, interdependent, multi-type event sequences. Existing work suffers from either limited model flexibility or poor model explainability and thus fails to uncover Granger causality across a wide variety of event sequences with diverse event interdependency. To address these weaknesses, we propose CAUSE (Causality from AttribUtions on Sequence of Events), a novel framework for the studied task. The key idea of CAUSE is to first implicitly capture the underlying event interdependency by fitting a neural point process, and then extract from the process a Granger causality statistic using an axiomatic attribution method. Across multiple datasets riddled with diverse event interdependency, we demonstrate that CAUSE achieves superior performance on correctly inferring the inter-type Granger causality over a range of state-of-the-art methods

    Using Big Data Analytics and Statistical Methods for Improving Drug Safety

    Get PDF
    This dissertation includes three studies, all focusing on utilizing Big Data and statistical methods for improving one of the most important aspects of health care, namely drug safety. In these studies we develop data analytics methodologies to inspect, clean, and model data with the aim of fulfilling the three main goals of drug safety; detection, understanding, and prediction of adverse drug effects.In the first study, we develop a methodology by combining both analytics and statistical methods with the aim of detecting associations between drugs and adverse events through historical patients' records. Particularly we show applicability of the developed methodology by focusing on investigating potential confounding role of common diabetes drugs on developing acute renal failure in diabetic patients. While traditional methods of signal detection mostly consider one drug and one adverse event at a time for investigation, our proposed methodology takes into account the effect of drug-drug interactions by identifying groups of drugs frequently prescribed together.In the second study, two independent methodologies are developed to investigate the role of prescription sequence factor on the likelihood of developing adverse events. In fact, this study focuses on using data analytics for understanding drug-event associations. Our analyses on the historical medication records of a group of diabetic patients using the proposed approaches revealed that the sequence in which the drugs are prescribed, and administered, significantly do matter in the development of adverse events associated with those drugs.The third study uses a chronological approach to develop a network of approved drugs and their known adverse events. It then utilizes a set of network metrics, both similarity- and centrality-based, to build and train machine learning predictive models and predict the likely adverse events for the newly discovered drugs before their approval and introduction to the market. For this purpose, data of known drug-event associations from a large biomedical publication database (i.e., PubMed) is employed to construct the network. The results indicate significant improvements in terms of accuracy of prediction of drug-evet associations compared with similar approaches
    corecore