237 research outputs found

    Fourier transforms of Gibbs measures for the Gauss map

    Get PDF
    We investigate under which conditions a given invariant measure μ\mu for the dynamical system defined by the Gauss map x↦1/xmod  1x \mapsto 1/x \mod 1 is a Rajchman measure with polynomially decaying Fourier transform ∣μ^(ξ)∣=O(∣ξ∣−η),as ∣ξ∣→∞.|\widehat{\mu}(\xi)| = O(|\xi|^{-\eta}), \quad \text{as } |\xi| \to \infty. We show that this property holds for any Gibbs measure μ\mu of Hausdorff dimension greater than 1/21/2 with a natural large deviation assumption on the Gibbs potential. In particular, we obtain the result for the Hausdorff measure and all Gibbs measures of dimension greater than 1/21/2 on badly approximable numbers, which extends the constructions of Kaufman and Queff\'elec-Ramar\'e. Our main result implies that the Fourier-Stieltjes coefficients of the Minkowski's question mark function decay to 00 polynomially answering a question of Salem from 1943. As an application of the Davenport-Erd\H{o}s-LeVeque criterion we obtain an equidistribution theorem for Gibbs measures, which extends in part a recent result by Hochman-Shmerkin. Our proofs are based on exploiting the nonlinear and number theoretic nature of the Gauss map and large deviation theory for Hausdorff dimension and Lyapunov exponents.Comment: v3: 29 pages; peer-reviewed version, fixes typos and added more elaborations, and included comments on Salem's problem. To appear in Math. An

    Multiscale Geometric Methods for Data Sets II: Geometric Multi-Resolution Analysis

    Get PDF
    Data sets are often modeled as point clouds in RDR^D, for DD large. It is often assumed that the data has some interesting low-dimensional structure, for example that of a dd-dimensional manifold MM, with dd much smaller than DD. When MM is simply a linear subspace, one may exploit this assumption for encoding efficiently the data by projecting onto a dictionary of dd vectors in RDR^D (for example found by SVD), at a cost (n+D)d(n+D)d for nn data points. When MM is nonlinear, there are no "explicit" constructions of dictionaries that achieve a similar efficiency: typically one uses either random dictionaries, or dictionaries obtained by black-box optimization. In this paper we construct data-dependent multi-scale dictionaries that aim at efficient encoding and manipulating of the data. Their construction is fast, and so are the algorithms that map data points to dictionary coefficients and vice versa. In addition, data points are guaranteed to have a sparse representation in terms of the dictionary. We think of dictionaries as the analogue of wavelets, but for approximating point clouds rather than functions.Comment: Re-formatted using AMS styl

    Hamiltonian dynamics, nanosystems, and nonequilibrium statistical mechanics

    Full text link
    An overview is given of recent advances in nonequilibrium statistical mechanics on the basis of the theory of Hamiltonian dynamical systems and in the perspective provided by the nanosciences. It is shown how the properties of relaxation toward a state of equilibrium can be derived from Liouville's equation for Hamiltonian dynamical systems. The relaxation rates can be conceived in terms of the so-called Pollicott-Ruelle resonances. In spatially extended systems, the transport coefficients can also be obtained from the Pollicott-Ruelle resonances. The Liouvillian eigenstates associated with these resonances are in general singular and present fractal properties. The singular character of the nonequilibrium states is shown to be at the origin of the positive entropy production of nonequilibrium thermodynamics. Furthermore, large-deviation dynamical relationships are obtained which relate the transport properties to the characteristic quantities of the microscopic dynamics such as the Lyapunov exponents, the Kolmogorov-Sinai entropy per unit time, and the fractal dimensions. We show that these large-deviation dynamical relationships belong to the same family of formulas as the fluctuation theorem, as well as a new formula relating the entropy production to the difference between an entropy per unit time of Kolmogorov-Sinai type and a time-reversed entropy per unit time. The connections to the nonequilibrium work theorem and the transient fluctuation theorem are also discussed. Applications to nanosystems are described.Comment: Lecture notes for the International Summer School Fundamental Problems in Statistical Physics XI (Leuven, Belgium, September 4-17, 2005

    Unitary Representations of Wavelet Groups and Encoding of Iterated Function Systems in Solenoids

    Full text link
    For points in dd real dimensions, we introduce a geometry for general digit sets. We introduce a positional number system where the basis for our representation is a fixed dd by dd matrix over \bz. Our starting point is a given pair (A,D)(A, \mathcal D) with the matrix AA assumed expansive, and D\mathcal D a chosen complete digit set, i.e., in bijective correspondence with the points in \bz^d/A^T\bz^d. We give an explicit geometric representation and encoding with infinite words in letters from D\mathcal D. We show that the attractor X(AT,D)X(A^T,\mathcal D) for an affine Iterated Function System (IFS) based on (A,D)(A,\mathcal D) is a set of fractions for our digital representation of points in \br^d. Moreover our positional "number representation" is spelled out in the form of an explicit IFS-encoding of a compact solenoid \sa associated with the pair (A,D)(A,\mathcal D). The intricate part (Theorem \ref{thenccycl}) is played by the cycles in \bz^d for the initial (A,D)(A,\mathcal D)-IFS. Using these cycles we are able to write down formulas for the two maps which do the encoding as well as the decoding in our positional D\mathcal D-representation. We show how some wavelet representations can be realized on the solenoid, and on symbolic spaces
    • …
    corecore