
FOURIER DECAY IN NONLINEAR

DYNAMICS

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Science and Engineering

2021

Connor Michael Stevens

Department of Mathematics

School of Natural Sciences



Contents

Abstract 4

Declaration 5

Copyright Statement 6

Acknowledgements 8

1 Introduction 10

1.1 A Brief History of Time and Frequencies . . . . . . . . . . . . . . . . . 10

1.1.1 Uniqueness of Fourier Series . . . . . . . . . . . . . . . . . . . . 11

1.1.2 Dimension Theory . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.3 Diophantine Approximation . . . . . . . . . . . . . . . . . . . . 14

1.1.4 Gibbs measures for the Gauss map . . . . . . . . . . . . . . . . 16

1.1.5 Fuchsian groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1.6 Fractal Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1.7 Linear map invariance . . . . . . . . . . . . . . . . . . . . . . . 22

1.1.8 Nonlinear map invariance . . . . . . . . . . . . . . . . . . . . . 24

1.2 Proving Fourier decay . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2.1 Transfer Operators . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2.2 Large Deviations . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.2.3 Renewal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.2.4 Exponential Sum Theory . . . . . . . . . . . . . . . . . . . . . . 31

1.2.5 Complex Transfer Operators . . . . . . . . . . . . . . . . . . . . 35

1.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.4 Why we get the main results . . . . . . . . . . . . . . . . . . . . . . . . 39

2



2 Thermodynamical Formalism 42

2.1 Iterating Transfer Operators . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2 Large Deviations for Expanding Markov Maps . . . . . . . . . . . . . . 49

3 Multiplicative Convolutions 55

3.1 Multiplicative Convolutions and Exponential Sums . . . . . . . . . . . 55

3.2 Non-Concentrated Derivatives of Markov Maps . . . . . . . . . . . . . 60

3.3 From Fourier transforms to Exponential Sums . . . . . . . . . . . . . . 64

4 The Gauss Map 72

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Distortion control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Polynomial Fourier decay . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3.1 Applying the decay of exponential sums . . . . . . . . . . . . . 79

5 General Nonlinear Maps 81

5.1 Naud’s Theory for Cantor Sets . . . . . . . . . . . . . . . . . . . . . . . 81

5.1.1 Non-integrability condition . . . . . . . . . . . . . . . . . . . . . 81

5.2 Totally Nonlinear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.1 Fourier Decay in the case of Totally-Nonlinear Dynamics . . . . 84

5.3 Total non-linearity and non-concentration . . . . . . . . . . . . . . . . 86

5.4 Polynomial Fourier decay . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5 The case of not totally-nonlinear dynamics . . . . . . . . . . . . . . . . 99

6 Convex Cocompact Fuchsian groups 102

6.1 Schottky Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Large Deviations for the Bowen–Series Map . . . . . . . . . . . . . . . 106

6.3 Measure Inverting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4 Non-Concentrated Derivative . . . . . . . . . . . . . . . . . . . . . . . 110

6.5 Fractal Uncertainty Principle . . . . . . . . . . . . . . . . . . . . . . . 116

7 Prospects 119

Bibliography 121

Word count 36,902

3



The University of Manchester

Connor Michael Stevens
Doctor of Philosophy
Fourier Decay in Nonlinear Dynamics
November 29, 2021

In 2017, Bourgain–Dyatlov [8] prove that Patterson–Sullivan measures on the limit
set of convex cocompact Fuchsian groups have polynomial Fourier decay. We begin
by proving that their main tool, Bourgain’s exponential sum theory, can be used to
prove polynomial Fourier decay for Gibbs measures for sufficiently nonlinear Markov
maps. We follow up by proving a remark of Bourgain–Dyatlov which stated that
a technical dimension assumption can be removed from a Fourier decay theorem of
Jordan–Sahlsten [26] by proving that the Gauss map is sufficiently nonlinear.

We move on to prove an analogous theorem for a much more general class of
(finite) nonlinear Markov maps with a strong separation condition. We do so using
the complex transfer operator theory of Naud [44] as recommended to us by Jialun Li
and Frédéric Naud. All aforementioned work is joint with Tuomas Sahlsten.

To finish, we go back to the ground-breaking work of Bourgain–Dyatlov, and ask
whether we can prove their main Fourier decay result for Gibbs measures on limit sets
of convex cocompact Fuchsian groups. A corollary of the aforementioned theorem on
general nonlinear Markov maps with strong separation is that we can obtain polyno-
mial Fourier decay for such measures. Alternatively, we can use the combinatorial large
deviation theory of Jordan–Sahlsten to prove a polynomial Fourier decay theorem for
a class of measures which are defined using Schottky structures. This avoids the need
for complex transfer operator theory to prove that the Fuchsian groups are sufficiently
nonlinear; we can just use the distortion factor analysis of Bourgain–Dyatlov. We con-
clude by proving a fractal uncertainty principle for Gibbs measures for Markov maps
with (eventual) polynomial Fourier decay by slightly adapting a proof of Bourgain–
Dyatlov [8].
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Chapter 1

Introduction

1.1 A Brief History of Time and Frequencies

The Fourier transform is an incredibly useful operator when studying functions. It

is well known that the Fourier transform of an integrable function f : R → C at a

frequency ξ ∈ R is defined by

f̂(ξ) =

∫
R
f(x)e−2πixξ dx.

They are used heavily in Quantum mechanics to define wave functions of the momen-

tum of a free particle using its position wave function (see subsection 1.1.6). Most

notably, Joseph Fourier in 1807 was the first person to introduce the idea of Fourier

series to solve the Heat equation [12]. His intention was to mathematically model the

flow of heat along a strip of metal. He assumed that the strip:

(i) is infinitesimally thick (two dimensional);

(ii) is infinitely long (think of this strip as starting from an axis y = 0 and going to

y →∞);

(iii) has finite width (consider edges at x = −1 and x = 1) and the edges will always

have zero temperature;

(iv) is in a vacuum (or more specifically, there is no loss of heat from the strip by

any means).

Initially, Fourier considered the case of applying constant heat 1 (ignoring units)

to the strip across y = 0. This already causes issues because we want zero heat at the

10
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edges x = −1 and x = 1. This was resolved by assuming that 1 could be written as

an infinite sum of cosine functions. This indeed gave a solution, but his methods were

mostly left unproven, including the use of a convergence theorem for integration and

the use of an infinite sum of cosine functions to represent the constant function 1. His

solution matched findings in experiments, but the mathematical community did not

accept his result. Fourier’s findings were only proven to be true 22 years later [12].

There is an analogous operator to the Fourier transform when studying measures.

For a Borel measure µ with support in Rn, we can define the Fourier transform of the

measure at frequency ξ ∈ Rn to be

µ̂(ξ) =

∫
e−2πiξ·x dµ(x)

where we use the Euclidean inner product in the exponent. We have a uniqueness prop-

erty by Fubini’s theorem which says if two measures have the same Fourier transform,

then they must be the same measure. The Fourier transform as a function is typically

easier to analyse than the measure itself, and it can allude to many properties of the

measure. The behaviour of µ̂ towards infinity in particular can tell us how uniform

the measure is. In the Lebesgue measure case, one can use the fundamental theorem

of calculus to show that the Fourier transform of Lebesgue measure is identically zero

(except at the origin, where the Fourier transform of a probability measure is always

equal to one). If the Fourier transform is very close to zero, one should think of it as

being ‘close to Lebesgue’, or uniform.

1.1.1 Uniqueness of Fourier Series

So Fourier used these Fourier series represent the constant function 1 as a sum of cosine

functions. We know that the Fourier series of a function is unique; the coefficients

are just given by the Fourier transform. However, the Fourier series is not always a

perfect construction, which is dictated by how it converges (e.g. pointwise or with

respect to the L2 norm) to the original function. We could ask whether some given

coefficients could give a Fourier series. A more general statement is whether we can

have trigonometric series which are not unique, as they are in the case of Fourier

series. We know that for sequences am, bm ∈ R with m ∈ Z, if we suppose that the
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two Fourier series are equal on x ∈ [0, 1], i.e. that

∑
m∈Z

ame
2πimx =

∑
m∈Z

bme
2πimx

then we must have that am = bm for all m ∈ Z as proved by Riemann. The set [0, 1]

is ‘too big’ for this not to be true. We can ask how large the set of values of x has to

be to be able to say that am = bm for all m ∈ Z [29]. This motivates the definition of

a set of uniqueness.

Definition 1.1.1. We say that E ⊂ [0, 1] is a set of uniqueness if there does not exist

a sequence (am)m∈Z which is non-zero such that for all x ∈ Ec we have that

∑
m∈Z

ame
2πimx = 0.

If E is not a set of uniqueness, we call it a set of multiplicity.

Unsurprisingly this is a big problem in Fourier analysis, and we can use Fourier

transforms for measures to answer some questions. Salem [56] proved that if there

exists a probability measure µ such that suppµ ⊂ E and the measure has Fourier

decay, then E must be a set of multiplicity. This is one of the many reasons why

Fourier decay is an interesting property.

1.1.2 Dimension Theory

One of the main motivations of studying Fourier transforms of measures comes from

dimension theory. We can heuristically think of the dimension of a set as the expo-

nential growth of the set at infinitesimal scales. When trying to find the Hausdorff

dimension of a set A ⊂ Rn, there are known techniques to find upper bounds for

the dimension. The most common method is the use of covering sets. Finding the

lower bound for the Hausdorff dimension of a set is typically where the most work

is involved. One can consider the following definition of Hausdorff dimension which

alludes to how the Fourier transform can help [39].

Definition 1.1.2. For s ∈ R we define the s-energy of µ to be

Is(µ) :=

∫ ∫
|x− y|−s dµ(x)dµ(y).
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When the s-energy is finite, one can think of this as telling us that the measure

does not concentrate on some ball B(x, r) ⊂ Rn with measure approximately rs. This

tells us that the measure is not supported on a set with dimension bigger than s. We

can therefore motivate the following definition [39].

Definition 1.1.3. We define the Hausdorff dimension of A to be

dimH A := sup{s ≤ n : Is(µ) <∞ for some µ ∈M(A)}.

We can bound the s-energy of µ from above by

(2π)−n
∫
|x|s−n|µ̂(x)|2 dx

up to some constant [39]. As a result, if we can find a measure µ such that µ̂(ξ) =

O(|ξ|−s/2), then we must have that s is a lower bound for dimH A. In fact, we can define

another notion of dimension by trying to find lower bounds for Hausdorff dimension

in such a way as follows [18].

Definition 1.1.4. We define the Fourier dimension of A to be

dimF A := sup{s ≤ n : |µ̂(ξ)| = O(|ξ|−s/2) for some µ ∈M(A) with µ(A) > 0}.

If the aforementioned method for finding lower bounds of Hausdorff dimension

using s-energies were ideal, we would have that dimF A = dimH A. When this property

does hold, we call A a Salem set. Fourier dimension has been well studied, so there are

many examples and non-examples of Salem sets. For α > 2, one collection of examples

is the α-well approximable numbers

W (α) :=
∞⋂
n=1

∞⋃
q=n

⋃
p∈Z

{x ∈ (0, 1) \Q : |x− p/q| ≤ q−α}

which are numbers where the bounds in Dirichlet’s theorem for approximable numbers

can be improved. This is a fractal set arising in number theory. Jarńık and Besicovitch

proved that the Hausdorff dimension of W (α) is 2/α [25] [6]. Kaufman then proved

that the Fourier dimension is the same by constructing a measure with sufficient decay,

proving that W (α) is Salem. This Salem property is not typical, however.

A non-example for Salem sets is the graph of a typical Wiener process. Wiener

processes are somewhat nice in the context of Salem sets; level sets [65] [46] and images
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of compact sets [41] for typical Wiener processes are Salem [28][27][29]. However, the

graph of a typical Wiener process produces a non-example. A typical graph has

Hausdorff dimension 3/2 [64], but the graph of any continuous function from the real

line to itself can be shown to have Fourier dimension bounded from above by one [19].

Another non-example is a line in R2. By considering frequencies proportional to

the normal vector for the line, it can be shown that a measure on the line can never

have Fourier decay. On the other hand, we have the following theorem for surfaces

with curvature, and it justifies why Salem sets are sometimes referred to as Round

sets [39].

Theorem 1.1.5. Consider a smooth hypersurface S ⊂ Rn. Let σ be the surface

measure on S. Let U ⊂ Rn−1 be an open and bounded set, and let ζ : Rn → R be a

smooth function with support contained in U ×R. For some point p ∈ S, assume that

spt ζ ∩ S is a graph of a smooth function ϕ : TpS → R. Assume that S has non-zero

curvature everywhere. Then measures µ satisfying dµ := ζdσ have polynomial Fourier

decay with rate (n− 1)/2.

So the Salem property is not typical for sets, but it certainly is desirable; this is

because there are plenty of nice properties of Salem sets, for example when dealing with

sumsets. If two sets A,B ⊂ Rn are Salem, then there exist two measures µA and µB on

A and B respectively which eventually have polynomial Fourier decay of order dimA/2

and dimB/2 respectively. As a result, by the convolution formula for measures, A+B

is also Salem. Fourier dimension does have its shortcomings however. As shown by

Ekström–Persson–Schmeling [18], the classical definition of Fourier dimension is not

countably stable. In their paper, they show that the definition of Fourier dimension

can be modified to make it countably stable by only consider measures that give non-

zero mass to the set A. This is why we include the non-zero measure condition in the

definition of Fourier dimension, which is not included in the classical definition.

1.1.3 Diophantine Approximation

Measures invariant under the Gauss map are of particular interest because they sup-

port subsets of the set of badly approximable numbers [26]. You can think of them

as a complimentary notion to well-approximability. That being said, we always have
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Dirichlet’s theorem for approximable numbers, so these numbers can only be so bad

[26].

Definition 1.1.6. We say that an irrational number x is badly approximable if there

exists a constant c > 0 such that for all proper rationals p/q ∈ Q we have that

∣∣∣x− p

q

∣∣∣ > c

q2
.

We shall define B ⊂ (0, 1) to be the set of all badly approximables.

Equivalenty, a number is badly approximable if all its continued fraction entries

are bounded. So if we let aj(x) be the j-th continued fraction entry for x, and define

BN := {x ∈ (0, 1) \Q : ∀j ∈ N, aj(x) ≤ N}, we can say that

B =
⋃
N∈N

BN .

The set of badly approximable numbers is a self-conformal set with respect to the

Gauss map, and hence has a fractal structure. Jarńık proved that dimH BN → 1 as

N → ∞ [25]. We can proceed by asking a long standing problem in the world of

number theory [26]: is the set of badly approximables Salem? This turns out to be a

very complicated problem, and not many mathematicians in the field would conjecture

with confidence that B is Salem or not. That being said, there is plenty of research

which slowly approaches the idea that B is Salem.

Kaufman proved that for N ≥ 3 there is a measure on BN with polynomial Fourier

decay [30]. This proof used a probabilistically constructed measure which allowed for

the use of a law of large numbers to control continuants q for the Gauss map (defined

more formally in Chapter 4). Such a measure is referred to as a Kaufman measure,

which you can further think of as being an invariant measure with respect to T n, that

is the Gauss map to some power n. Queffélec and Ramaré used the ideas of Kaufman

along with some more careful continuant analysis to prove that Kaufman’s work can

be extended to N = 2 [50]. So is this decay a property of the measures constructed,

or statistically defined measures with respect to the Gauss map in general? Much

progress was made towards this question in the last decade, notably beginning with

Jordan–Sahlsten in 2015 [26].
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1.1.4 Gibbs measures for the Gauss map

The following theorem is a precursor to all of the main theorems which we shall explore.

Theorem 1.1.7 (Jordan–Sahlsten, 2015 [26]). Consider a Gibbs (statistical) mea-

sure µ with respect to the Gauss map T with finite Lyapunov exponent. Assume that

dimH µ > 1/2, and that there exists a δ > 0 such that

µ({x ∈ (0, 1) : x < 1/n}) = O(n−δ)

which we refer to as the tail condition. Then we have that µ has polynomial Fourier

decay.

The tail condition here can be thought of as making sure that extreme events are

unlikely, so that nice statistical ergodic theory can be used. The measure dimension

condition is far less natural, and occurs because of an multiplicative approximation

error when turning the Fourier transform as an integral with respect to µ into an

integral with respect to Lebesgue measure. Jordan–Sahlsten use large deviation theory

to control continuants, which you could think of as a dynamical analogue of Kaufman’s

use of a law of large numbers. Further, large deviation theory works for all Gibbs

measures, and not just Kaufman measures.

It turns out that the main theorem of Jordan–Sahlsten solves a long standing

problem posed by Salem. This problem concerns the Fourier–Stieltjes measure defined

with respect to the Minkowski Question Mark function ? : (0, 1)→ R defined by

?(x) := 2
∞∑
n=1

(−1)n+1

2a1(x)+...+an(x)
.

The corresponding Fourier–Stieltjes measure can be defined by extending the condition

µ?([x, y]) :=?(x)−?(y) for intervals [x, y] ⊂ (0, 1). This measure is equivalently a

Bernoulli measure invariant under the Gauss map with weights defined for each n ∈ N

by

µ?

([ 1

n+ 1
,

1

n

])
= 2−n.

Salem proved that there exists an η > 0 such that

1

2n+ 1

n∑
k=−n

|µ̂?(k)| = O(n−η)
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which lead Salem to conjecture that µ has Fourier decay. Persson pointed out that

Jordan–Sahlsten solved Salem’s problem by showing that dimH µ? > 1/2 and that the

tail condition holds, and further this gave polynomial decay rate [47].

It is worth noting that the dimH µ > 1/2 assumption was believed to be unneces-

sary. A result of Hochman–Shmerkin proved that if you consider some finite set of at

least two elements A ⊂ N and

BA := {x ∈ (0, 1) \Q : ∀j ∈ N, aj(x) ∈ A}

then any Gibbs measure for the Gauss map which is supported on BA is normal (that is,

n-normal for every n ∈ N). Normality of a measure is weaker than polynomial Fourier

decay, but Hochman–Shmerkin’s result works for measures with non-zero dimension,

so their work supports the idea that Jordan–Sahlsten’s dimension assumption could

potentially be removed. The Gauss map assumption however is very important, and

its non-linearity is crucial in being able to prove the results of Jordan–Sahlsten and

Hochman–Shmerkin.

1.1.5 Fuchsian groups

In Bourgain–Dyatlov [8], they prove a polynomial Fourier decay theorem for a class of

measures defined on the limit set of convex cocompact Fuchsian groups. We begin by

defining a generalised Fourier transform [8].

Definition 1.1.8. Consider functions Φ ∈ C2(R,R) and g ∈ C1(R,C). We define the

generalised Fourier transform of a measure µ to be

µ̂Φ,g(ξ) =

∫
eiξΦ(x)g(x) dµ.

So here we have the usual Fourier transform of a measure, but with a nonlinear

phase function Φ and a varying weight function g. This generalisation is very use-

ful, especially when considering wave functions (see subsection 1.1.6). Bourgain and

Dyatlov prove the following result for Patterson–Sullivan measures.

Theorem 1.1.9 (Bourgain–Dyatlov, 2017 [8]). Consider a hyperbolic surface H/Γ

defined by a convex cocompact Fuchsian group. Let δ > 0 be the dimension of the limit

set ΛΓ. Let µ be the Patterson–Sullivan measure on this limit set. Assume that there
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exists some CΦ,g > 0 such that the functions Φ ∈ C2(R,R) and g ∈ C1(R,C) given in

Definition 1.1.8 satisfy

||Φ||C2 + ||g||C1 ≤ CΦ,g and inf
X
|Φ′| ≥ C−1

Φ,g.

Then there exists a εδ > 0 and a CΓ,Φ,g > 0 such that for all ξ ∈ R such that |ξ| > 1,

|µ̂Φ,g(ξ)| ≤ CΓ,Φ,g|ξ|−εδ .

Such a result was possible because of the nonlinearity of the Möbius transformations

that form Γ [8]. This strongly suggested that a similar result should be true for

measures invariant under nonlinear maps (noting that Patterson–Sullivan measures

are also equivariant under their corresponding Fuchsian group) as suggested in [8]. In

Bourgain–Dyatlov [8], they use theory on Schottky structures to be able to write the

limit set ΛΓ as a self-conformal set

ΛΓ :=
⋂
n∈N

⋃
a∈Wn

Ia

where Ia are construction intervals defined by the Schottky structure consisting of

Möbius transformations γa for a ∈ A, and Wn is the set of words of length n using

an alphabet A (without any inverse cancellations). So you can think of the Schottky

structure as a set of transformations which contract the construction intervals to the

limit set, in a similar way to an iterated function system. Furthermore, for some

generation n, a reduced set of words Z(τ) can be defined whose construction intervals

sufficiently cover the limit set, whilst maintaining that for all words a ∈ Z(τ),

|Ia| ≤ τ < |Ia′ |

where a′ is the word a with the last letter deleted. They prove more important results

about words in Z(τ), including that there exist C > 0 such that

C−1|Ia|δ ≤ µ(Ia) ≤ C|Ia|δ, C−1|Ia| ≤ |Iā| ≤ C|Ia|

where ā is the inverse of the word a in the sense that γā = γ−1
a . The first bounds

are down to the strong properties of the Patterson–Sullivan measure. You can almost

think of this measure as a Hausdorff measure of dimension equal to the dimension of

the limit set. The second bounds we call ‘control of regular words under inversion’,
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which turns out to be a desired property when a tree structure exists like in the

Schottky structure case. This is because a lot of information about a derivative γ′a

can be retrieved by the point γ−1
a (∞), which is equal to γā(∞). You can think of

this as the point where the transformation γa distorts the boundary of the hyperbolic

space. It is also the sole reason why the transformation is nonlinear; without it, the

transformation would just be a translation.

The aim of Bourgain–Dyatlov was to be able to use the exponential sum theory

of Bourgain to prove their desired result. To do so, they reduce to a combinatorial

bound on words, which basically says that for a given generation n, the difference in

derivatives of transformations γa for a ∈ Z(τ) are sufficiently different. This condi-

tion is equivalent to the condition that a basic counting measure on derivative values

is Ahlfors–David regular [39], which basically says that the measure of a ball can

be controlled by its diameter to some power. Bourgain–Dyatlov prove this property

using the tree structure of the Schottky group, and the control of words under inver-

sion/inverting. The inverting words condition in particular is a very strong property

which is almost unique to Möbius transformations. However, in a remark, Bourgain–

Dyatlov state that their methods can be used to prove a Fourier decay result when

considering statistical measures for the Gauss map. The key question is how this result

could be obtained without this inverting property. It turned out that the analogous

property would be reversing, to be defined later.

1.1.6 Fractal Uncertainty

The Heisenberg Uncertainty principle is familiar to all people in the field Quantum

mechanics. The principle basically states that you cannot easily measure position and

momentum of a free particle at the same time. In particular, if σx and σv are the

standard deviations of position and momentum respectively, then we have that

σxσv ≥ h/4π

where h is the Planck constant. Many mathematicians and physicists will tell you that

this is one of the most important statements in Quantum theory. You can consider

this inequality as an application of the following more general statement for Fourier

transforms of functions in Harmonic analysis [62].
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Theorem 1.1.10. For f ∈ L2(R) we have that for any position t0 ∈ R and frequency

ξ0 ∈ R, ∫
(t− t0)2|f(t)|2 dt ·

∫
(ξ − ξ0)2|f̂(ξ)|2 dξ ≥ ||f ||42/16π2.

So this theorem says that subject to the variance of a function at a point and the

variance of its Fourier transform at some frequency, one must be large with respect to

the other. Here we will consider “Fractal Uncertainty”, so how could we define this?

The first important thing to note is that the Heisenberg principle and Theorem

1.1.10 are subject to the variance of a function and its transform around a pair (t0, ξ0).

When looking at Fractal Uncertainty principles, we will consider them about many

points, in particular locally to fractal sets. Hence we are no longer interested in a

statement about a pair (t0, ξ0) and the behaviour of a function and its transform

about this point. In our case, we will require a more global quantity to observe that

will be able to simultaneously consider the functions at all points local to a fractal set.

Hence instead of variance about a point/mean, we will just look at the square integral

of these functions, namely ∫
|f̂(ξ)|2 dµ(ξ) ·

∫
|f(x)|2 dµ(x)

and the behaviour local to fractal sets. Note that we need not use the same measure

in these two integrals, but we will do so here to smoothly transition from Theorem

1.1.10. A Fractal uncertainty principle will tell us that a function cannot be localised

close to a fractal set in both position and frequency [14]. So how would we translate

such a statement into an equation? We can first restrict our attention to functions

supported on the neighbourhood of a fractal set X. Let 0 < h� 1 and let Xh be the

h-neighbourhood of a fractal X. So our aim is to construct a mathematical statement

that says “for two fractals X, Y , if a function f is supported on Xh, then f̂ does not

have much of the L2-mass of f on Yh”. We can formalise this statement using norms,

and we will quantify ‘not much’ using h. We first define our Fourier transform in this

setting [8].

Definition 1.1.11. For fixed h ∈ (0, 1), define the Fourier transform operator Fh :

L2(R)→ L2(R) by

Fh(ξ) =
1√
2πh

∫
e−ixξ/hf(x) dµ(x).



1.1. A BRIEF HISTORY OF TIME AND FREQUENCIES 21

So this is the generalised Fourier transform with a fixed weight and phase function

determined by the Planck constant. This operator is used to recover the wave function

of momentum from the position of a quantum particle. We define our uncertainty

principle as follows [8].

Definition 1.1.12. Consider two fractal sets X, Y ⊂ R. Let Xh and Yh be their

h-neighbourhoods respectively. We say that X and Y satisfy a Fractal Uncertainty

principle if there exists a β > 0 such that

||1YhFh1Xh||L2(R)→L2(R) ≤ hβ.

Using the definition of the norm of an operator in L2, we see that this definition

seems to formalise the statement given earlier about localisation. So we have some

sort of generalisation of Heisenberg to fractal sets. An important question is, can

we work back from such a statement to recover Heisenberg? This is indeed the case

(see [14]). To begin, we can reduce to the case when a particle’s expected position

and momentum are zero. So in this situation, our fractal is {0}, and {0}h = [0, h] is

the h neighbourhood of our fractal. To model position of a quantum particle, wave

functions are used. A wave function describes the quantum state of a particle by giving

a probability distribution for its position. Given a wave function f(x, t), for position

x and time t, its square will be our probability distribution. So firstly by definition of

a probability function, ∫ ∞
−∞

f 2 dx = 1

since there is a 100% probability that the particle is somewhere at any time t. So we

define the probability that the particle is at a position in the set [a, b] at time t by

Px[a,b](t) =

∫
[a,b]

|f(x, t)|2 dt.

Momentum of a particle is similarly modelled using the probability distribution given

by the Fourier transform of f . So we define the probability that the particle is moving

with momentum in [a, b] by

Pm[a,b](t) =

∫
[a,b]

|Fhf(ξ)|2 dξ.

So in the setting of Definition 1.1.12, Xh = [0, h] and Yh = [0, h]. We will begin by

assuming that f and its Fourier transform are both very large on [0, h], and for heuristic
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proof, completely supported on [0, h]. This corresponds to the standard deviations of

position and momentum being large, hence we are assuming that Heisenberg is false

when given the fractal uncertainty principle with β = 1/2 (for a contradiction). So we

have that

Px[0,h](t) = 1 = Pm[0,h](t)

as our assumption. Hence by Definition 1.1.12,

1 =
(∫

[0,h]

|Fh(f |[0,h])(ξ)|2 dξ
)2

≤ h||f |[0,h]||22 = h.

So 1 ≤ h (up to some heuristic approximation) for a contradiction. Hence the fractal

uncertainty principle heuristically agrees with Heisenberg for β = 1/2. For a complete

proof, see [14, Section 2.1].

There are two major methods for proving Fractal Uncertainty principles. One of

these methods is by Fourier decay of 1Xh . This lead to the Uncertainty principle of

Bourgain–Dyatlov on the limit set of a convex cocompact Fuchsian group [8, Propo-

sition 4.1]. Another method is by the additive energy of 1Yh , which we do not discuss

here, but refer the reader to [14].

1.1.7 Linear map invariance

The following theorem of Mosquera–Shmerkin gives us a basis to study the case of

linear Markov map invariant measures.

Theorem 1.1.13 (Mosquera–Shmerkin, 2018 [42]). Consider F ∈ C2(R,R) with posi-

tive second derivative. Let µ be a homogenous positive-entropy Bernoulli measure with

respect to a self-similar IFS. Then the measure Fµ has polynomial Fourier decay.

In a later section we show that this corresponds to a class of not totally nonlinear

maps (section 5.5). More specifically, we get Fourier decay when the dynamics T is

such that there exists some Lipschitz function g : X → R and constant function c > 0

with

log |T ′| = c− g ◦ T + g.

Mosquera–Shmerkin focus on homogenous self-similar measures, so this constant func-

tion cannot be any locally constant function. The general locally constant case would

correspond to studying piecewise linear Markov maps whose branches have different
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gradients. There has been much progress towards this case, especially in 2019 with the

works of Li–Sahlsten and Solomyak. In the one dimensional setting, Solomyak proved

the following promising result.

Theorem 1.1.14 (Solomyak, 2019 [60]). Let µ be a self-similar Bernoulli measure

with non-zero Bernoulli weights for an IFS with contractions given by the entries of a

vector λ ∈ (0, 1)m . Then µ has polynomial Fourier decay for all λ /∈ E, where E is a

set of Hausdorff dimension zero.

This theorem suggests that in the linear Markov map invariant case, we should

be able to obtain polynomial Fourier decay most of the time. This theorem does not

give specific examples, and in many known examples the decay rate is weaker. The

following examples exhibit logarithmic decay.

Theorem 1.1.15 (Li–Sahlsten, 2019 [38]). Consider a self-similar non-atom measure

µ on R whose dynamics has two distinct contracting branches fi and fj whose gradients

ri and rj are such that

Ri,j =
log ri
log rj

/∈ Q.

Then µ has Fourier decay. If we can further say that some Ri,j is badly approximable,

we get logarithmic Fourier decay.

An immediate question is whether this decay rate can be improved to polynomial

decay, and to more general examples. Li–Sahlsten made further progress in a higher

dimensional analogue with some algebraic conditions arising from renewal theory.

Theorem 1.1.16 (Li–Sahlsten, 2019 [37]). Let µ be a self-affine measure on Rd for

d ≥ 2 with positive entropy and associated contractions fj = Aj + bj. If Γ := 〈Aj : j ∈

A〉 < GL(d,R) and Γ is proximal and totally irreducible, then µ has Fourier decay.

Li–Sahlsten believe that the proximal condition is unnecessary for Fourier decay,

the definition for which is in their paper. Total irreducibility is the main condition,

which requires that Γ does not fix a finite union of proper subspaces of Rd. They

further prove that given some topological conditions on Γ, they can get polynomial

Fourier decay. They conjecture that the topological and proximal conditions are not

required for µ to have polynomial Fourier decay. Proving this conjecture would require

improving their tools from renewal theory.
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Recent work of Rapaport [52] gives necessary and sufficient conditions for a Bernoulli

measure for an affinely irreducible IFS to be non-Rajchman. Here affinely irreducible

means that the IFS doesn’t fix an affine subspace. This theorem also uses a renewal

theoretic proof idea first coined by Li.

1.1.8 Nonlinear map invariance

Of course we have already discussed many examples of Fourier decay of measures

defined using nonlinear maps, such as the Gauss map and Fuchsian groups. Much

of this theory is very actively researched, meaning that many more general theorems

have been made possible. Three such theorems will be our focus later on, but here we

will discuss a very recent paper which is strongly related to the main general nonlinear

map theorem to presented.

Theorem 1.1.17 (Algom–Hertz–Wang [1], 2020). For an interval J ⊂ R and some

γ > 0, let

Φ = {f1, . . . , fn | fi : J → R ∀i = 1, . . . , n}

be a C1+γ(J) IFS which is uniformly contracting and never has zero derivative. Assume

that for every t, r ∈ R the set

{− log |f ′(y)| : y is the fixed point of f ∈ Φ}

is not contained in the set t+ rZ.

Then we have that any non-atomic self conformal measure with respect to Φ has

Fourier decay.

How they prove their result seems to have appealing links with much of the lit-

erature we have discussed. Their method involves a stopping time argument as in

Li–Sahlsten [38] to be able to control the derivatives of the IFS under iteration. To

extract a ‘regular’ part of the measure, they use a Central Limit theorem which seems

to be analogous to the use of a large deviation theorem as in Jordan–Sahlsten [26]. It

may be more directly relatable to Kaufman’s [30] use of a law of large numbers (as

discussed in subsection 1.1.3). Their aim is to be able to use a Fourier decay type

lemma of Hochman [21], which itself is proved using integration by parts (where again

we can see a parallel to Kaufman’s methods [30]).
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This theorem of Algom–Hertz–Wang will turn out to be very similar to a general

theorem on Markov maps to be proved later (see Theorem 1.3.4 ahead). The uniform

contraction, non-zero derivative, and non-lattice derivative conditions are analogous

to uniform expansion, non-infinite derivative, and total nonlinearity conditions to be

explored in the Markov map settings. There are three major differences between the

two theorems. Firstly, the main theorem of Algom–Hertz–Wang does not assume any

separation conditions on the IFS (in contrast with a very strong separation condition

in the main theorem to be proved). One can expect this because the theorem is a

result of the IFS being nonlinear, not the position of its construction intervals. On the

other hand, their methods do not present a decay rate, unlike our main theorem to be

presented which gives (eventual) polynomial Fourier decay. The final major difference

is methods used which seem very independent of each other; it would be an interesting

prospect to compare the ideas used.

1.2 Proving Fourier decay

1.2.1 Transfer Operators

Thermodynamical formalism lies at the heart of so much modern work in the theory of

(statistical) nonlinear-invariant measures. In the paper of Jordan–Sahlsten, the theory

of transfer operators are heavily used to be able to make use of the large deviation

theory which is central to achieving their proof. We will define them in the same way

as Jordan–Sahlsten [26].

Definition 1.2.1. Given a dynamical system T : X → X and a (real) potential ϕ, we

define the transfer operator on C(X) by

Lϕf(x) :=
∑

y∈T−1x

eϕ(y)f(y).

This operator is intended to extend the core theory of finite linear dynamical

systems, which use matrices, to infinite/nonlinear dynamics. A fundamental example

of such core theory is apparent in the Perron–Frobenius theorem (see Theorem 6.3.2),

which can by generalised to transfer operators as follows [26, Proposition 3.10].

Theorem 1.2.2 (Ruelle–Perron–Frobenius). There exists a positive eigenfunction w ∈

C(X) with eigenvalue λ > 0 for the transfer operator Lϕ.
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Furthermore, there exists a Gibbs measure µ on X such that for all f ∈ C(X) we

have that ∫
(Lϕf) dµ = λ

∫
f dµ.

Transfer operators are a way of studying the fine properties of integrals under

invariant measures. By studying equilibrium states for Gibbs measures, we get that

the Ruelle–Perron–Frobenius theory holds for λ = 1 for the measures that we will

consider (under some normalisation [26]). So by using the invariance of the transfer

operator under integration, we have a way to separate integrals using the dynamics.

In the case of expanding Markov maps, we can essentially split integrals into a sum of

integrals on construction intervals which are defined by the dynamics. This is a widely

used idea in the theory of symbolic dynamics. By iterating the transfer operator, we

get the same result when considering n-th generation construction intervals, so we can

make use of the combinatorial theory of large deviations. Furthermore, we can iterate

Lnϕ to be able to consider integrals on blocks of length n words, which allows us to

impose the necessary conditions for Bourgain–Dyatlov’s [8] exponential sum theory,

which we will use to prove Fourier decay results. Moving forward to proving the main

(nonlinearity) assumption of this exponential sum theory in the context of dynamical

systems, it becomes clear that a complex analogue of transfer operators could be

advantageous (to be discussed in subsection 1.2.5).

1.2.2 Large Deviations

Birkhoff’s Ergodic Theorem [66] says that we expect the average of a function over

orbits to be dictated by the mean when we consider an ergodic system. Consider a

bounded space X ⊂ R with an expanding dynamical system T : X → X. Assume that

T has branches which can be indexed by an alphabet A. Let a := a1a2 . . . anan+1 . . . ∈

AN and a|n := a1 . . . an be the first n entries of a and fa|n := fa1 ◦ . . . ◦ fan be the

corresponding inverse branch for T n. Further assume that T is conjugate to the shift

map σ on the infinite word space AN. This will mean that an infinite word a ∈ AN

will give us a point y ∈ X in the limit set of T where

y := lim
n→∞

fa|n(xan+1)
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where xan+1 is defined to be the centre point of the construction interval Ian+1 :=

fan+1(X). Given the point y ∈ X, we will define yn+1 := T ny ∈ X so that y =

fa|n(yn+1).

Let µ be a Gibbs measure with respect to T . When considering the potential

function ψ := − log |T ′|, let λ be its mean with respect to µ. So Birkhoff’s Ergodic

theorem tells us that there exists some set D of measure zero such that for all y =

fa|n(yn+1) ∈ X \D we have that

lim
n→∞

1

n
Snψ(y) = lim

n→∞

1

n
log |f ′a|n(yn+1)| = −λ

where we use the inverse theorem for differentiable functions and the chain rule to get

the first equality. Breaking down the limiting statement, we can say that for µ almost

every y ∈ X and for every word a|n ∈ An which is the initial coding of such a point

y, for every ε > 0, there exists an N ∈ N such that for all n > N ,

| log f ′a|n(yn+1) + λn| < εn.

We can get a very similar statement for any point x ∈ X rather than yn+1 by assuming

that fa|n (or T itself) is sufficiently smooth.

Large deviation theory analyses the set of points y where we deviate from this

averaging statement, and how the set of deviating points behave in measure as N

increases (as we make ε smaller). Call this deviating set X \ Rn(ε), the compliment

of the non-deviating (regular) set with respect to ε and n. The aim of large deviation

theory is to say something like that there exists some δ > 0 and C > 1 such that

µ(X \Rn(ε)) ≤ e−nδ.

so that we can ignore the deviating set when dealing with expressions such as the

Fourier transform. In the countable alphabet case, this will also mean we only have

to consider finitely many words in Nn when studying nth level construction inter-

vals. The following theorem of Jordan–Sahlsten proves a Large deviation theorem for

(eventually) expanding Markov maps.

Theorem 1.2.3. Consider a Hölder continuous observable f and suppose that the set

{t ∈ R : P (tf + ϕ) <∞}
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Figure 1.1: The first and second iterations of the Gauss map (pictures
created in MATLAB).

contains a neighbourhood of zero. Then for any ε > 0, there exists a δ > 0 and an

n1 ∈ N both depending on ε such that for n ≥ n1 we have that

µϕ

({
x ∈ X :

∣∣∣Snf(x)− n
∫
f dµ

∣∣∣ > nε
})

= O(e−nδ).

Jordan–Sahlsten bound the deviating sets using pressure [26]. They then bound

pressure using its properties such as analyticity and convexity. In the countable al-

phabet case as studied in Jordan–Sahlsten [26], the pressure can be infinite (unlike the

finite alphabet case). In this situation, the alphabet can be truncated (made finite),

and then the behaviour of the pressure can be analysed when the alphabet approaches

its original countable state before truncation. In any case, the tools of Bourgain–

Dyatlov [8] and large deviation theory are central to the proofs of the main results to

be presented.

1.2.3 Renewal

We will look at the renewal theory in the context of the work of Jialun Li on stationary

measures [33]. Some technical details will be omitted, because we will mainly be

interested in the parallels to the dynamical context here.

For m ≥ 1 we will consider the action of the matrix group G = SLm+1(R) on the

projective space of lines PRm+1. We can define a random walk on the projective space

using G by defining a measure on it. We consider a Borel measure µ on G and let Γµ

be the subgroup generated by the support of µ. By considering Γµ rather than G, we
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can ensure that µ doesn’t trap random walks in parts of the projective space. This is

important if we want to consider some notion of ‘mixing’. To get mixing, we assume

that Γµ is a (Zariski) dense subgroup of G. So given a point x ∈ PRm+1, we can

define a walk x, g1x, g2g1x, g3g2g1x, . . . for gi ∈ Γµ by selecting each gi randomly with

respect to the measure µ. We then get a stationary measure ν on PRm+1 satisfying

the µ-stationary equation

ν = µ ∗ ν :=

∫
Γµ

g∗ν dµ(g)

where g∗ν is the standard push-forward measure [33]. Stationary measures are the

first examples Li studied when proving Fourier decay using renewal theory, initially

for m = 1.

Theorem 1.2.4 (Li, 2017 [33]). Consider a Borel probability measure µ on Γµ which

we assume to be (Zariski) dense. Assume further µ has finite exponential moment.

Then we have that µ-stationary measures have Fourier decay.

The finite exponential moment condition is analogous to the finite pressure con-

dition of Theorem 1.2.3. This is not surprising, because the random walk theorem

of Li [33, Proposition 2.8] controls the random elements of G in a similar way as

Jordan–Sahlsten control the inverse branches for the dynamics using their large devi-

ation theory. A higher dimensional analogue of Theorem 1.2.4 was proven by Li [35]

by proving a higher dimensional sum-product theorem [34] and employing the expo-

nential sum theory of Bourgain–Dyatlov [8]. Note that polynomial Fourier decay was

achieved using this method. We will now consider the renewal theoretic methods in

the context of Li–Sahlsten [38], because they are slightly simpler.

Consider some scaling constant τ > 0. Consider words denoted by a and let a′ be

the word a with the last letter deleted. Let’s say that we want to consider a set of

words Z(τ) such that

|Ia| ≤ τ < |Ia′ |

where Ia is the image of an inverse branch fa. Then Z(τ) gives a partition of the space

X using construction intervals. In Bourgain–Dyatlov’s [8] case of Patterson–Sullivan

measures of dimension δ > 0, they get that the measure of Ia can be controlled by

τ δ due to the strong geometric properties of the measures. Li–Sahlsten use a slightly

weaker control for Bernoulli measures.
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... .........

Figure 1.2: A visual representation of Z(τ) for some τ > 0 with an alphabet
of size four, hence four branches going down from each node. Each end of
the branches represents some word with length equal to its stage down
the tree (with the top of the tree being the empty word). Each black
dot is where the stopping time kicks in; going further, the corresponding
construction interval would be too small.
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In the work of Li–Sahlsten [38], it is shown that the Fourier transform of Bernoulli

measures can be written as the expectation of a sum over a random walk. This then

allows the application of renewal theory to bound the Fourier transform. Li–Naud–Pan

[36] on the other hand use renewal theory to prove the main (nonlinearity) assumption

of Bourgain’s sum-product theory [8, Lemma 2.16]. This allows the use of Bourgain–

Dyatlov’s exponential sum theory.

One can ask whether there is a dynamical analogue of renewal theory which could

be used to prove results like Jordan–Sahlsten. Complex transfer operators theory is an

example of such an analogue, as pointed out to Sahlsten by Li in conversations with

Frédéric Naud (also see [33, Remark 1.10]).

1.2.4 Exponential Sum Theory

The exponential sum theory of Bourgain–Dyatlov [8] will be the key that unlocks all

of the main results to be proven in the later chapters. In this section we will explore

a few of these exponential sum theorems; in particular those which have applications

to dynamical systems. When considering Fourier transforms, the study of exponential

sum theory is easily motivated when you consider approximating the integral with a

sum. This will be the philosophy of most of the examples to be presented, although

the details of this approximation can be quite intricate to fit its purpose (for example,

to achieve a strong rate of Fourier decay). We begin by first looking at possibly the

most famous exponential sum theorem [66].

Theorem 1.2.5 (Weyl’s Criterion). A real sequence (xn)n∈N is uniformly distributed

modulo 1 if and only if for each l ∈ Z \ {0} we have that

lim
n→∞

1

n

n−1∑
j=0

e2πilxj = 0.

Using this criterion, one can prove that xn := nα is uniformly distributed if and

only if α is irrational. The following theorem was obtained using Weyl’s criterion [26].

Theorem 1.2.6 (Davenport–Erdős–LeVeque). Consider a probability measure µ ∈

M([0, 1]) and let (sk)k∈N be a strictly increasing sequence. If for any non-zero p ∈ R

we have that
∞∑
N=1

1

N3

N∑
k,m=1

µ̂(p(sk − sm)) <∞
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then (skx)k∈N is uniformly distributed modulo 1 for µ almost every x ∈ [0, 1]. In

particular, if µ has logarithmic Fourier decay (or better), then the finite sum condition

holds.

This theorem can in particular be used to prove that if µ has logarithmic Fourier

decay, then µ almost every x ∈ [0, 1] is normal (i.e. a normal number in every natural

base). This theory further motivates the study of Fourier decay, and exponential sum

theory itself can be used to prove strong decay theorems. The following multiplicative

convolution theorem of Bourgain is not an exponential sum theorem, at least in its

general form [7]. Note that the multiplicative convolution of two measures µ and ν on

R is defined in an analogous manner to additive convolutions as follows: for f ∈ C0(R),∫
f d(µ⊗ ν) =

∫∫
f(xy) dµ(x) dν(y).

We will say that |ξ| ∼ N if there exists a constant C > 0 independent of ξ and N

such that C−1N ≤ |ξ| ≤ CN . The following theorem is the most essential ingredient

necessary to obtain the main proofs to be presented.

Theorem 1.2.7 (Bourgain’s Multiplicative Convolution Theorem [7]). For all δ1 > 0,

there exist ε3, ε4 > 0 and large k ∈ N such that the following holds.

Let µ be a probability measure on [1
2
, 1] let and N be a large integer. Assume for

all N−1 < σ < N−ε3 that

max
a∈R

µ(B(a, σ)) < σδ1 . (1.1)

Then for all ξ ∈ R with |ξ| ∼ N ,

|µ̂⊗k(ξ)| < N−ε4 . (1.2)

To prove Fourier decay in the main results to come, we will apply this theorem to

counting measures on derivatives of dynamics, making it an exponential sum theorem.

Most of the work to be presented will either be attempting to generalise this exponen-

tial sum theorem, or proving its main assumptions. In particular, we will see that (1.1)

can prove polynomial Fourier decay in many nonlinear dynamical settings. We will call

it the non-concentration condition, or in our dynamical context, non-concentration of

derivatives (of T ).
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Sum-Product Theory

As previously mentioned, Bourgain’s theorem on multiplicative convolutions will be

crucial in obtaining the main results to be presented. Theorem 1.2.7 is proved using a

so called ‘sum-product theorem’. In general, the sum-product phenomenon states that

a finite set cannot simultaneously have additive and geometric structure. We begin by

stating the sum-product theorem of Erdős–Szemerédi. Note that for a set A ⊂ R we

define sumsets by

A+ A := {a1 + a2 : a1, a2 ∈ A}

and product sets by

A · A := {a1a2 : a1, a2 ∈ A}.

Theorem 1.2.8. There exist constants c > 0 and ε > 0 such that for any finite set

A ⊂ N we have that

max{|A+ A|, |A · A|} ≥ c|A|1+ε.

If you assume that A has a small sumset, in particular that there exists C > 0

independent of |A| such that

|A+ A| ≤ C|A|

then Freiman’s theorem for reals states that A is contained in a generalised arithmetic

progression. In this case, A cannot have strong geometric structure (geometric pro-

gressions), because you cannot fit many geometric lattices in arithmetic ones (think of

trying to fit many/long geometric progressions in an arithmetic subset of the integers).

For A ∈ R+, if we assume that |A · A| ≤ C|A|, we can use Freiman’s theorem applied

to the set logA to show that A must be contained in a generalised geometric progres-

sion. Again, we can say that in this case, A cannot have strong additive structure in

a similar way as we reasoned earlier. The combination of these cases is the idea which

the sum-product philosophy represents. Bourgain’s discretized sum-product theorem

gives more quantitative sum-product bounds for sets A ⊂ [1/2, 1] such that there is

an N > 1 such that A is N−1-separated. The sum-product bound is N ε · |A|, where

this specific bound is important to be able to get (1.2).

So why should sum-product theory suggest a multiplicative convolution theorem

like Bourgain’s? The idea is that the Fourier transform will be large on additive

structures, and the measure will be defined so that it will be large on multiplicative
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structures. To explain this, let us first consider the Fourier transform on arithmetic

progressions. Consider a measure which has large mass on an arithmetic progression

AP := {a, a + θ, . . . , a + θn} for some a, θ ∈ R and some integer n > 1. On AP , the

Fourier transform of the measure at frequencies ξ = j/θ for j ∈ Z would be

µ̂AP (ξ) =

∫
AP

e2πixξ dµ(x) =

∫
a+θk∈AP

e2πiaj/θe2πikj dµ(a+ θk) = e2πiaj/θµ(AP ).

So on the arithmetic progression AP , the size of the Fourier transform is the mass of

the progression. So if the measure concentrates too much on arithmetic progressions,

the Fourier transform will be bounded from below by the mass of the progressions for

arbitrarily large frequencies. This will mean that the arithmetic progressions will stop

the Fourier transform from decaying. Bourgain’s multiplicative convolution theorem

will first tell us that in the case that we don’t have additive structure, we can get

decay of the Fourier transform.

Now we try to consider how we can make sure that the Fourier transform decays

when we have no multiplicative structure. We can do so by forcing a multiplicative

structure on the measure. Consider a measure µ assigning large mass to a geometric

progression {a, aθ, . . . , aθn}. Define the multiplicative convolution µ ⊗ µ as before,

where for an integrable complex function f we have that∫
f dµ⊗ µ =

∫ ∫
f(xy) dµ(x)dµ(y).

There will be many ways to get the same result when multiplying two terms in the

geometric progression, for example if you want to multiply two terms to get a2θn,

a2θn = (a)(aθn) = (aθ)(aθn−1) = . . .

So in this example, the measure µ ⊗ µ will give large mass to a2θn, and this is true

for similar values defined using the geometric progression. By convolving the measure

more times, we can concentrate the mass on points relating to the geometric progres-

sion. So this will mean that we cannot expect the Fourier transform of a many-times

self-convolved measure to be small. When considering a lack of geometric structure,

Bourgain’s theorem tells us that integrals with respect to the multiplicative convolu-

tion will be small; how small is dictated by the sum-product bound. The reader is

referred to [7, Lemma 8.43] for precise arguments using a delicate combination of the

Balog–Szemerédi–Gowers theorem and Freiman’s theorem.
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1.2.5 Complex Transfer Operators

In Naud’s paper [44], he focuses on the study of Selberg Zeta functions. They are also

the primary focus of the paper of Bourgain–Dyatlov [8]. Let P be the set of primitive

(trace out their image exactly once) closed geodesics for a given surface M , and let

l(γ) be the length of γ ∈ P . Given a compact Riemann surface M of constant negative

curvature −1, we define the Zeta function by

ZM(s) :=
∞∏
k=0

∏
γ∈P

(1− e−(s+k)l(γ)).

This function turns out to be very useful in finding asymptotic bounds for the number

of geodesics in P . This is done by studying non-trivial zeros of ZM . Naud’s first main

theorem in this paper states that there exists an ε > 0 such that Zm(s) is analytic

and non-vanishing on {<(s) > δ− ε} where δ is the Poincaré exponent (defined in the

same way as Bourgain–Dyatlov), excluding the simple zero at s = δ. This theorem is

used to prove the following.

Theorem 1.2.9 (Naud, 2005 [44]). If N(T ) is the number of primitive closed geodesics

of length less than T > 0, then there exists α ∈ (0, δ) such that

N(T ) = li(eδT ) +O(eαT )

where li(x) =
∫ x

2
dt

log t
.

This result is proven using the central tool of this paper, which is on the spectral

gap of complex transfer operators. Such a property can be used to prove many more

results. In the paper of Araújo–Melbourne [2], they prove the exponential decay of

correlations for a certain class of flows using spectral theory for complex transfer

operators.

Definition 1.2.10. Consider a flow Ft and let R be its suspension. Let µ be the

(normalised) product of an R-invariant probability measure and Lebesgue measure.

We define correlations as

%v,w(t) :=

∫
vw ◦ Ft dµ−

∫
v dµ

∫
w dµ

The flow is said to be mixing if the correlations decay to zero as t goes to infinity.
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The paper of Araújo–Melbourne has a particularly interesting corollary on corre-

lations. To explain, we first define robust mixing.

Definition 1.2.11. We define a flow Φt to be robustly mixing if there exists an open

set of functions containing Φt such that all functions in this set are mixing (not just

Φt).

Their main corollary on the Lorenz attractor flows is as follows, obtained by using

their main theorem on exponential decay of correlations.

Theorem 1.2.12 (Araújo–Melbourne, 2016 [2]). The Lorenz attractor is robustly ex-

ponentially mixing.

The main assumption of this paper on the suspension dynamics is important when

considering the application to more general dynamics. They assume a uniform non-

integrability condition, which states that there exists some C > 0 such that if Rn is

the nth Birkhoff sum for R and hi are two inverse branches for the map Rn, then

inf D(|Rn ◦ h1 −Rn ◦ h2|) ≥ C > 0. (1.3)

This turns out to be very similar to the main assumption of Naud’s theorems. In

Naud’s theorem, this is used as an assumption for nonlinear dynamics in general

(not just flows). In the context of dynamics on a one-dimensional space, the non-

integrability condition will be the same as saying that there exists two n-generation

inverse branches for the dynamics T such that there difference in derivatives is bounded

below from zero. We will later show that this is related to the non-concentrated

derivative assumption.

1.3 Main Results

The main aim of the work to be presented is to be able to generalise the result of

Jordan–Sahlsten. Their result on polynomial Fourier decay has several assumptions,

some of which we do not believe to be necessary. By eliminating some of these as-

sumptions, we may bring our field closer to understanding what is necessary for poly-

nomial decay of the Fourier transform of a measure. The initial progress, in joint work

with Tuomas Sahlsten, proved that the main theorem of Jordan–Sahlsten without the

dimH µ > 1/2 condition.
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Theorem 1.3.1 (Sahlsten–S, 2018 [53]). Consider a Gibbs measure µ with respect to

the Gauss map T with locally Hölder potential. Assume that dimH µ 6= 0, and that

there exists some δ > 0 such that

µ({x ∈ (0, 1) : x < 1/n}) = O(n−δ).

Then we have that µ has polynomial Fourier decay.

This was done by combining the techniques of Bourgain–Dyatlov with the large

deviation theory presented in Jordan–Sahlsten.

The second assumption that we want to remove is the dependence on the Gauss

map. A folklore conjecture [8] is that a Gibbs measure for a nonlinear map should

also have polynomial Fourier decay. This conjecture is reasonable when looking at

comments made by Jordan–Sahlsten [26] and Bourgain–Dyatlov [8]. Results of Li [33]

and Li–Naud–Pan [36] also reinforce such a statement. So, how would we begin to try

and remove the Gauss map assumption and replace it with a nonlinear map? In [53],

we prove that it is sufficient to prove that the map has “non-concentrated derivative”

which we define as follows [54].

Definition 1.3.2. Let τ : N → R be a positive function that decreases exponentially

and consider some ε > 0. Define Jτ(n)(ε) := {η ∈ R : τ(n)−1/4 ≤ |η| ≤ eεnτ(n)−1/2}.

Let T : X → X be an expanding map and µ be a Gibbs measure for T with Lyapunov

exponent λ > 1 and Gibbs constant C > 0. For n ∈ N define R(n, ε) := 162Ce3ελn.

We say that T has non-concentrated derivative with respect to µ if there exists

c0 > 0, ε3 > 0 and κ0 > 0 such that for all sufficiently small ε > 0, all sufficiently

large n ∈ N, all η ∈ Jτ(n)(ε), σ ∈ [R(n, ε)−2|η|−1, |η|−ε3 ] and all x ∈ I,

]{(a,b, c) ∈ Rn(ε)3 : |e2λnf ′ab(x)− e2λnf ′ac(x)| ≤ σ} ≤ eκ0εnσc0]Rn(ε)3.

This is a dynamical analogue of a condition proven by Bourgain–Dyatlov in the

context of convex cocompact Fuchsian groups, and is a major key we can use to unlock

polynomial Fourier decay. We prove this property for a wide class of nonlinear maps

known as totally nonlinear maps [3].

Definition 1.3.3. Consider a space X ⊂ R and a map T : X → R. Let ∆ be a large

interval containing the domain and range of T . We say that T is totally-nonlinear if



38 CHAPTER 1. INTRODUCTION

there does not exist a C1 diffeomorphism g : ∆→ R and some locally constant function

c : X → R such that

log |T ′| = c+ g ◦ T − g

on the set X (not necessarily the entirety of ∆).

We prove the following theorem for totally nonlinear maps, where ΛT will be the

repeller for T [51, Section 4.2].

Theorem 1.3.4 (Sahlsten–S, 2020 [54]). Assume that X is a disjoint union of intervals

and T : X → R is real-analytic and (eventually) expanding on each of these intervals.

Further assume that T is totally nonlinear and satisfies the Markov property. Then

there exists a δ0 > 0 such that the following holds. Let µ be a Gibbs measure for T

with locally Hölder potential and that

dimH ΛT − δ0 ≤ dimH µ ≤ dimH ΛT .

Then µ has polynomial Fourier decay.

Remark 1.3.5. It is important to note that this theorem is from a previous version

of the arxiv paper [54], but all previous versions are available to view on arxiv in the

standard way. The latest version on arxiv removes the dimension assumption using a

paper of Stoyanov [63]. We do not cover the extension here for various reasons, but

see Remark 5.3.5 for some heuristic details for the extension. Alternatively see [54]

for full details.

Since proving Theorem 1.3.1 in 2018, it was unclear to Sahlsten and I as to whether

we could prove a theorem like Theorem 1.3.4. This is because the non-concentrated

derivative assumption is quite difficult to prove. What we did know at the time

was that we could prove this assumption for the Gauss map [53] and convex cocom-

pact Fuchsian groups [8]. In particular, the result of Bourgain–Dyatlov was only

proven for Patterson–Sullivan measures. One can ask whether the large deviation

theory of Jordan–Sahlsten can be used to extend the result of Bourgain–Dyatlov to

statistically defined measures on the limit set of Fuchsian groups. The proof of the

non-concentrated derivative property given by Bourgain–Dyatlov does take a lot of

advantage of the strong properties of the Patterson–Sullivan measures. A particular
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property called ‘inversion’ (defined in Chapter 6) can be proven to be sufficient, but

this property is not typical for general statistical measures. We prove that a small, but

uncountable class of measures has this inversion property, and hence get the following

result.

Theorem 1.3.6 (S, 2021). Consider a Gibbs measure µ defined on the limit set of a

convex cocompact Fuchsian group such that the dimension of the limit set is non-zero.

Assume further that µ has the inversion property (which holds for an uncountable class

of Gibbs measures), and that µ has locally Hölder potential. Then µ has polynomial

Fourier decay.

1.4 Why we get the main results

The reduction of the Fourier transform to exponential sums in the Markov map case

[53] turned out to follow a similar method to that of Bourgain–Dyatlov [8] by replacing

some of their main tools when dealing with Fuchsian groups with the large deviation

theory of Jordan–Sahlsten [26]. In the context of Jordan–Sahlsten when dealing with

statistical measures µ for nonlinear dynamics T , they define a set of nice words using

large deviations. Let λ > 1 be the Lyapunov exponent for the Markov map T , let

s = dimH µ > 0, and consider ε > 0 small and Cε,n := eεn. They define the set of

regular words a of length n using properties which give us that

C−1C−3λ
ε,n e

−λsn ≤ µ(Ia) ≤ CC3λ
ε,ne

−λsn.

Essentially we have that µ(Ia) is controlled by e−sλn, so we compare e−λn with τ in

Bourgain–Dyatlov (see Subsection 1.1.5). The main work here is to check that the

theory of Bourgain–Dyatlov still works when the ε exponentially growing terms are

introduced.

In the nonlinear markov map case, we can reduce proving polynomial Fourier decay

to proving the non-concentrated derivative assumption. Bourgain–Dyatlov prove this

assumption using a tree structure inherited by the definition of their ‘regular words’

Z(τ) and distortion factor properties for Schottky groups. In the large deviation

context of Jordan–Sahlsten, we do not have such a tree structure, because the structure

of the regular set is unknown (as is typical when using statistical theorems). However,
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we are able to define regular words in a way such that they are regular at many

generations, not just the generation n, which will aid us without a tree structure.

It seems that when trying to prove that a map has non-concentrated derivative,

in both the Gauss map case and Fuchsian group setting, we have a strong geometric

structure which allows us to analyse derivatives. In both cases, what we are essentially

studying is f ′′a/f
′
a = D(log f ′a) for indexes a ∈ An, where fa are iterated inverse

branches for an (eventually) expanding map. In the Mobius transformation case, this

is related to studying the preimage of infinity of the transformation, notably γ−1
a (∞).

We can then use inverting (or ‘reversal’ in Bourgain–Dyatlov [8]) to say that γ−1
a (∞)

is a point γā(∞) with initial coding ā, where ā will be the ‘inverse’ of a. We then

use the measure in question to study how these points distribute. It also makes sense

heuristically as to why we study γ−1
a (∞), because this point tells you where derivatives

of γa get large. You can think of γ−1
a as the point that causes the real line to stretch

under the transformation, hence knowing how they distribute helps us to understand

derivatives of these transformations.

In the Gauss map case, we find out that f ′′a/f
′
a corresponds to the point with finite

continued fraction expansion given by a←, the reverse of the word a := a1 . . . an−1an,

namely

[a←] =
pn(a←)

qn(a←)
:=

1

an +
1

an−1 +
1

. . .+
1

a1

.

The differences of such points is studied by Queffélec and Ramaré again using the

measure itself. Jordan–Sahlsten use their arguments to count such words a, and hence

we could almost directly use their argument in [53].

In the case of general nonlinear maps, we were recommended by Jialun Li after his

discussions with Frédéric Naud to try using the theory of complex transfer operators to

prove non-concentration. One main reason behind this recommendation is that these

operators are historically used in counting problems. Indeed, they are well known for

counting primitive geodesics on hyperbolic surfaces (see Theorems 1.2.9 and 1.2.12).

This lead to the progress that we have now, which proves that these operators can
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indeed be used to count derivatives, and prove the non-concentration assumption.

Another reason why it seemed that complex transfer operators could be relevant

to this problem is because of the common assumptions to get the relevant spectral

gap theorems. The main assumption, which typically is something similar to a map

being totally-nonlinear, can be shown to be equivalent to a condition on distortions

f ′′a/f
′
a, see (1.3). In particular, the assumption heuristically says that sometimes these

distortions can be far apart. This suggests a strong link between the methods of

Bourgain–Dyatlov, Jordan–Sahlsten (and Queffélec–Ramaré), and complex transfer

operator theory, because all of these ideas consider control over the the distortions

when they are close together.



Chapter 2

Thermodynamical Formalism

We will assume that the first generation inverse branches of the dynamics T : X → X

are monotonic increasing. We could study a less restrictive condition, such as in the

Gauss map case the inverse branches are decreasing, which usually just means taking

note of whether the generation n being analysed is odd or even. However, for simplicity,

we restrict to the easiest case to manage which is increasing branches.

Throughout this thesis we shall study dynamical systems given by Markov maps

which are conjugate to a subshift of finite type on some symbolic space A ⊂ N. In the

Hyperbolic surface setting, A = {1, . . . , 2r} for some r will be a finite set. However,

there will be a condition on concatenating letters to form words when studying points

y ∈ T−1{x} where T is the Markov map in this setting (to be defined). If we can say

that the concatenation condition is satisfied, we say that the resulting concatenation

of letters (or word) is admissible. Given two finite words a and b, we will say that

a→ b if the concatenated word ab is admissible. In the Gauss map case, the alphabet

will be N and hence countable, but there is no condition on concatenating letters. The

aim of this section is to give a general framework which can be used throughout this

thesis. There will be some slight differences in the framework when we study the

countable Gauss map case, but the reader will be referred to the details given in the

corresponding paper in this case [53].

We consider intervals (Ij)j∈A which are closed and bounded intervals in R. We will

let X be the interior of the union of these intervals. We will consider a Markov map

T : X → X, and define its branches Tj := T |Ij ∈ C2(Ij) for each interval Ij. We will

denote the inverse branches of T by fj := (T |Ij)−1 for each j ∈ A. We will require

42
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that T :

(1) is eventually expanding, i.e. that there exists some θ > 1, CE > 0, and NE ≥ 1

such that for all n ≥ NE and all x ∈ T−n(X),

|(T n)′(x)| ≥ CEθ
n;

(2) satisfies the Markov property, i.e. for all i, j ∈ A, if T (Ij) ∩ Ioi is non-empty, then

Ii ⊂ T (Ij).

This gives us a limit set

Λ := ∩∞j=0T
−j(X)

which is such that T (Λ) ⊂ Λ. To analyse the points in the limit set, we will use a

symbolic coding given by the Markov map.

We also require a condition that we refer to as finite distortion. The assumption

says that for all iterated inverse branches fa, we have that there exists some B > 0

such that for all z ∈ Ib where b ∈ A is such that a→ b, we have that∣∣∣f ′′a (z)

f ′a(z)

∣∣∣ ≤ B.

This assumption can be significantly weakened by only considering maps T whose

inverse branches are C2, and the size of the image of the branches are bounded from

above and below. This also uses the fact that we only consider finitely many branches

for simplicity. This assumption will allow us to control an inverse branch evaluated

on different points.

Lemma 2.0.1. Given b ∈ A, consider a ∈ An such that a→ b and x, y ∈ Ib. Assume

that there exists some B > 0 such that for all z ∈ Ib∣∣∣f ′′a (z)

f ′a(z)

∣∣∣ ≤ B.

Then we have that
f ′a(x)

f ′a(y)
≤ exp(B|x− y|).

Proof. By the mean value theorem we have that

f ′a(x)

f ′a(y)
= exp

(
log

f ′a(x)

f ′a(y)

)
≤ exp | log f ′a(x)− log f ′a(y)|

= exp(|(log f ′a)′(z)| · |x− y|) ≤ exp(B|x− y|).
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We define our transition matrix A = (ai,j) which is size (#A)× (#A) (which can

be infinite) by

ai,j =

1 when Ij ⊂ T (Ii)

0 otherwise.

We will assume that A is aperiodic, so that there exists a p such that Ap has no zero

entries. If ai,j = 1, we will write i→ j. The matrix A will then define our admissible

words

Σ := {a := a1a2 . . . ∈ AN : ai,i+1 = 1∀i ≥ 1}

We will letAn be the corresponding set of finite words of length n (which are admissible

with respect to A). We can define the corresponding inverse branches fa := fa1◦. . .◦fan
for a ∈ An. On the sequence space Σ, we define the shift map σ : Σ → Σ by

(σa)n := an+1 for all n ≥ 1. We define our coding map Π : Σ→ Λ by

Π(a) := lim
n→∞

fa1 ◦ . . . ◦ fan−1(xan)

where xan is any point in Ian (for example, the centre point). Under Π, the shift on Σ

is conjugate to T acting on Λ so that T ◦ Π = Π ◦ σ.

We can now define (Gibbs) measures on such spaces. We do so using a potential

ϕ ∈ C2(X). We define the nth Birkhoff sum of ϕ on X by

Snϕ :=
n−1∑
j=0

ϕ ◦ T j.

We writeM as the space of all Borel probability measures on X andMT ⊂M as the

space of all T -invariant ones X. We will only consider potentials ϕ : X → R which

are locally Hölder, that is there exists C > 0 and δ < 1 such that for all n ∈ N,

sup
a∈An

sup{ϕ(x)− ϕ(y) : x, y ∈ Ia} ≤ Cδn.

So these potentials behave nicely on construction intervals, which will be a useful

property when considering the following constructions.

Definition 2.0.2. (1) Let C(X) be the space of all bounded continuous functions

h : X → R. The transfer operator associated to a potential ϕ is the map Lϕ :

C(X)→ C(X), defined for h ∈ C(X) and x ∈ X by

Lϕf(x) :=
∑

y∈T−1{x}

eϕ(y)h(y).
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The dual operator of Lϕ on M is the map L∗ϕ :M→M, defined by

L∗ϕν(h) :=

∫
Lϕh dν

at ν ∈M and h ∈ C(X).

(2) Let µ ∈MT . Then the Kolmogorov-Sinai entropy of µ is defined by

hµ := lim
n→∞

1

n

∑
a∈AnA

−µ(Ia) log µ(Ia)

and the Lyapunov exponent of µ is

λµ :=

∫
log |T ′| dµ.

(3) Given a potential ϕ : X → R, define the pressure associated to ϕ by

P (ϕ) := sup
µ∈MT

{
hµ +

∫
ϕdµ :

∫
ϕdµ > −∞

}
Any potential attaining this supremum is called an equilibrium state for ϕ.

It will be useful to represent the transfer operator using the symbolic coding. We

will have that for b ∈ A,

Lϕh(x) =
∑

a∈A: a→b

eϕ(fax)h(fax) x ∈ Ib.

In the context of countable Markov maps, the equilibrium state is not unique,

and also without further assumptions on the potential, it fails to have many nice

properties. The following theorem follows from Sarig [57], but written down in e.g.

[26] gives natural assumptions that we will impose and then gives us the statistical

theorems needed to get enough regularity for equilibrium states. Note that this theory

also holds for the case of Markov maps with finitely many branches because the tail

condition is satisfied.

Theorem 2.0.3. Suppose ϕ : X → R is a locally Hölder continuous potential and µ

an equilibrium state associated to ϕ. Assume µ has at most polynomial tail, that is

there exists some p > 1 such that

µ
( ∞⋃
j=n

Ij

)
= O(n−p) n→∞.

Then there exists a locally Hölder continuous potential ϕ0 : X → R such that
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(1) ϕ0 ≤ 0, P (ϕ0) = 0 and Lϕ01 = 1;

(2) the potential ϕ0 has a corresponding measure µϕ0 satisfying

L∗ϕ0
µϕ0 = µϕ0

and the Gibbs condition: there exists C > 0 such that for µ almost every x ∈ X

we have for all n ∈ N that

C−1 exp(Snϕ0(x)) ≤ µϕ0(Ia) ≤ C exp(Snϕ0(x)).

(3) the equilibrium state µϕ0 associated to ϕ0 is the same measure as µ:

µ = µϕ0 .

Thanks to part (3) of Theorem 2.0.3, we may, from the beginning assume that

ϕ ≤ 0, P (ϕ) = 0, Lϕ1 = 1, µ is the unique equilibrium state associated to ϕ satisfying

the invariance under the transfer operator

L∗ϕµ = µ

and the Gibbs condition: there exists some C > 0 such that for all n ∈ N and all

x ∈ X,

C−1 exp(Snϕ(x)) ≤ µ(Ia) ≤ C exp(Snϕ(x)).

We shall assume C > 1 without loss of generality.

By assuming that the potential − log |T ′| is locally Hölder, we will get that inverse

branches ‘linearise’ under iteration. We will use a weak form of this linearisation. Note

that given a word a ∈ An, we will say that a point x ∈ X is such that a→ x if x ∈ Ib
for some b ∈ A and a→ b.

Lemma 2.0.4. Assume that − log |T ′| is locally Hölder. For a ∈ An, x, y ∈ X such

that a→ x, y, we have that

e−C |f ′a(x)| ≤ |f ′a(y)| ≤ eC |f ′a(x)|.

Proof. Since the potential − log |T ′| is assumed to be locally Hölder we have that

| log |T ′(fa(x))| − log |T ′(fa(y))| ≤ Cδn < C

where we weakly use δ < 1. We can conclude using the inverse rule for differentiable

functions.
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For two numbers a, b ∈ R, we will say that a ∼ b if there exists a C ≥ 1 independent

of a and b such that C−1a ≤ b ≤ Ca. We use the following basic results to compare

words of similar length.

Lemma 2.0.5. For a word a ∈ An, consider b ∈ A such that a → b. Then we have

that for any x, y ∈ X such that a→ x and a′ → y

|f ′a(x)| ∼ |f ′a′(y)|.

From this we will also have that for any b ∈ Am such that a→ b the following hold

|f ′a(y)| ∼ |Ia|

|Iab| ∼ |Ia|

|Iab| ∼ |Ia| · |Ib|.

Proof. By the chain rule we have that

|f ′a(x)| = |f ′a′(fanx)| · |f ′an(x)|.

By assuming that T has bounded derivative we have that |f ′amx| ∼ 1 by using the

inverse rule for differentiable functions. We can therefore get our first ∼ relation of

the lemma by using Lemma 2.0.4.

To relate derivatives to construction intervals, we use the mean value theorem to

see that

|Ia| = |f ′a′(ξ)| · |Ian|

for some ξ ∈ Ian , so |Ia| ∼ |f ′a′(y)| by Lemma 2.0.4. We therefore get the second ∼

relation. We follow by noticing that

|f ′a(x)| ∼ |f ′a′(y)| ∼ |Ia|

giving the third ∼ relation. In a similar manner we get that

|Iab| ∼ |f ′a(x)| ∼ |f ′a′(y)| ∼ |Ia|

and

|Iab| ∼ |f ′ab′(ξ)| ∼ |f ′a(fb′ξ)| · |fb′(ξ)| ∼ |Ia| · |Ib|

for some ξ ∈ Ibm , giving the final two ∼ relations.
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We will require a similar concatenation property for measuring construction inter-

vals, known as the quasi-Bernoulli property.

Lemma 2.0.6. For a ∈ An and b ∈ Am with a→ b, we have that

µ(Iab) ∼ µ(Ia) · µ(Ib).

Proof. If we define the Bernoulli weights

wa|k(x) := eSkϕ(fa|kx)

for x ∈ X such that a → x, then µ(Ia) ∼ wa(x) by the Gibbs condition. We get the

required result by using the fact that

wab(y) = eSn+mϕ(faby) = eSnϕ(fab(y))+Smϕ(fbx) = wa(fby) · wb(x).

2.1 Iterating Transfer Operators

We will define blocks of words with respect to the transition matrix. For some k ∈ N,

we define

Akn := {B := b1 . . .bk : bj ∈ An}

to be the set of k-blocks of words of length n, noting that we do not add an admissibility

condition here for now. We will always consider A ∈ Ak+1
n and B ∈ Akn, at least until

we later impose regularity (using Rn in Lemma 2.2.3) and distributive conditions

(using W in Lemma 3.2.2) on these objects. They will remain the same lengths

however, namely n(k + 1) and nk respectfully. We define the following concatenation

operations (as in [8]):

A ∗B := a0b1a1b2 . . . ak−1bkak and A#B := a0b1a1b2 . . . ak−1bk.

For these operations to be well-defined, we must have that (aj)n → (bj+1)1 for all

j = 0, . . . , k, and additionally (bk)n → (ak)1 for the ∗ operation. If these conditions

hold, we write A ↔ B. We can start to study the dynamics using these blocks of

words by using the transfer operator (see proof of [45, Proposition 2.1]).
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Lemma 2.1.1. We have that

Lnϕh(x) =
∑

a∈An:an→b

eSnϕ(fax)h(fax), x ∈ Ib

Proof. First note that this result is true for n = 1 by definition of the transfer operator.

We shall assume that this result is true for n = k. For n = k + 1 we have that

Lk+1
ϕ h(x) = Lϕ

( ∑
a∈Ak:ak→b

eSkϕ(fa)h ◦ fa
)

(x)

=
∑

a∈Ak:ak→ak+1

∑
ak+1∈A

eϕ(fak+1
x)
(
eSkϕ(fafak+1

x)h(fafak+1
x)
)

=
∑

aak+1∈Ak+1

exp
(
ϕ(fak+1

x) +
k−1∑
i=0

ϕ(T ifafak+1
x)
)
h(faak+1

x)

We get the result for n = k+ 1 by noting that the power in the exponent of the above

line is equal to Sk+1ϕ(x) by definition of the Birkhoff sum.

To consider blocks of words, we can repeatedly use Lemma 2.1.1 to see that

(Lnϕ)2k+1h(x) =
∑
A↔B
A→b

wA∗B(x)h(fA∗Bx) x ∈ Ib

where we say A → b if (ak)n → b. So we will now be able to consider how functions

behave locally on construction intervals rather than the whole space X. The advantage

of this is that we will be able to ignore any construction intervals on which the dynamics

behave badly by defining deviating sets.

2.2 Large Deviations for Expanding Markov Maps

Cramér’s theorem states that for a sum of n independent identically distributed ran-

dom variables with finite moment generating function, for some ε > 0, the probability

that the sum is bounded away from its mean by εn will decay exponentially as n→∞.

We can reach an analogue for dynamical systems by considering Birkhoff sums. In the

dynamical context, we will have assumptions on the pressure which are analogous to

the finite moment assumptions in Cramér’s theorem. The reason we need the specific

conditions on pressure and the tail condition is that we need to find a large regular part

of the measure µ in terms of the Lyapunov exponent and Hausdorff dimension, which

allow us to prove good estimates on the Fourier transforms. In Bourgain–Dyatlov [8]
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they dealt with Patterson–Sullivan measures which automatically are Ahlfors–David

regular, which is stronger than the Gibbs condition, so they do not need a large de-

viation theorem to control the measure. Large deviations allow us to extract a “large

part” of the support with similar Ahlfors–David regular behaviour for µ. Here is also

where we need the finite Lyapunov exponent for µ. The following theorem is given in

the paper of Jordan–Sahlsten [26], and we refer the reader there for a proof.

Theorem 2.2.1 (Jordan–Sahlsten, Large deviations for (µ, T ) [26]). Let µ be the

equilibrium state associated to ϕ having at most polynomial tail, that is there exists

some p > 1 such that

µ
( ∞⋃
a=n

Ia

)
= O(n−p) n→∞.

Let λ be the Lyapunov exponent of µ and s the Hausdorff dimension. Write

ψ = − log |T ′|.

Then we have that for any ε > 0, there exists a δ > 0 such that

µ
({
x ∈ X :

∣∣∣ 1
n
Snψ(x) + λ

∣∣∣ ≥ ε or
∣∣∣Snϕ(x)

Snψ(x)
− s
∣∣∣ ≥ ε

})
= O(e−nδ).

This theory is crucial for us to apply the ideas from additive combinatorics as

often this type of initial regularisation is needed. We can now define the parts of the

dynamics which are regular with respect to large deviations.

Definition 2.2.2 (Regular words and blocks). Fix now ε, εr > 0 and n ∈ N. Write

An(ε) =
{
x ∈ X :

∣∣∣ 1
n
Snψ(x) + λ

∣∣∣ < ε and
∣∣∣Snϕ(x)

Snψ(x)
− s
∣∣∣ < ε

}
.

Define for a fixed n ∈ N the set of regular words:

Rn =
n⋂

k=bεrnc

{a ∈ Nn : Ia|k ⊂ Ak(ε)}

Using the definitions of regular words, we define a regular block of length k to be the

concatenation of k regular words of length n. We denote the set of such words by Rk
n.

Note that we can equivalently define this set as

Rk
n = {A ∈ (Nn)k : I(σn)iA ⊂ An(ε), ∀i = 0, 1, . . . , n− 1}
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where σ is the shift mapping and An(ε) is the n-regular set. We shall consider the

corresponding geometric points to be

Rk
n :=

⋃
A∈Rkn

IA ⊂ X

for ε > 0 small enough.

Note that unlike the choice made by Jordan–Sahlsten [26], we will require bεrnc-

regularity as opposed to bn/2c for some εr > 0 to be defined. One can achieve

bεrnc-regularity for any desired εr > 0 by choosing large enough n so that

bεrnc − εrn/2 ≥
1

δ
log

4

1− e−δ

in the paper of [26]. To make our choice of εr, one must look at the exponential sum

theorem we shall use. In Lemma 3.1.2, we define some ε3 > 0 using only the dimension

of the measure that we consider. The lemma requires us to consider derivatives of

inverse branches of size up to e−ε3λn. To be sure that we can do this, we choose

εr = ε3/8. For this definition to make sense, we must make sure that ε does not

dominate εr. We can do so by demanding that 0 < ε < ε3/9
9, which is valid because

ε3 only depends on the measure. Note we require ε significantly smaller than εr so

that we can consider many multiples of ε during the proof and still remain less than

εr so it remains the dominant power.

Lemma 2.2.3. Define Cε,j := eεj, and assume that n is chosen large enough so that

log 4

εrn
< ε/2,

log 4C2

log(θ2εrn)
< ε/2 and

e−δεrn

1− e−δ
< e−δεrn/2

recalling that θ > 1. Given an n-regular word a ∈ Rn and any j ∈ {bεrnc, . . . , n} we

have that the following hold:

(i) the size of the derivative |f ′a|j | satisfies

1

16
C−1
ε,j e

−λj ≤ |f ′a|k | ≤ Cε,je
−λj

and hence so does the length |Ia|j |;

(ii) The measure satisfies

C−1 · C−3λ
ε,j e

−sλj ≤ µ(Ia|j) ≤ C · C3λ
ε,je
−sλj;
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(iii) The Birkhoff weights satisfy

C−3λ
ε,j e

−sλj ≤ wa|j(x) ≤ C3λ
ε,je
−sλj.

(iv) The cardinality

1
2
C−1C−3λ

ε,n e
λsn ≤ ]Rn ≤ CC3λ

ε,ne
λsn

Recall we assume that T is eventually expanding. As a result, for k ∈ N we have that

if n→∞,

µ(X \Rk
n) = O(e−δεrn/2)

where δ = δ(ε/2) is given to us Theorem 2.2.1.

Remark 2.2.4 (Regularity at many scales). So this multi-regularity will allow us to

say for a regular word a, µ(Ia|j) ≈ e−sλj and |Ia|j | ≈ |fa|j | ≈ e−λj for εrn ≤ j ≤ n.

This will have a great deal of uses in the proofs of all the main theorems to be presented.

It will allow us to control the measure of sets I with |I| ≈ e−λj, meaning we can

exclude ‘bad’ sets that we don’t like. For example, when dealing with exponential sums

with exponents of order η > 0, we can ignore frequencies of order smaller than eλj,

which will be necessary to use the exponential sum theory.

This will also be useful when proving non-concentration of derivatives, i.e. when

considering two iterated inverse branches evaluated on the same regular construction

interval Id, and their difference being approximately σ. We will be able to say that the

set of such points x is in an interval J of length approximately σ1/2. So it will be useful

to be sure that there is a valid choice of j such that σ1/2 ≈ e−λj. We will then be able to

count the number of construction intervals Id contained in J by using regular measure

bounds on the intervals Id and the interval J . This will drive the non-concentration

proofs.

We will need εr to be at least 1/2 in the Gauss map setting to use the proof of

Jordan–Sahlsten where they modify some continuant analysis of Queffélec–Ramaré

[26][50]. This analysis is pivotal in proving the non-concentration condition for the

Gauss map, which gives Fourier decay.

In the totally-nonlinear map setting, we will define εr with respect to the spectral

gap of a complex transfer operator so that the corresponding theory can be used to
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count derivatives. In particular, we will want to restrict the inverse branches so that

their derivative is approximately the spectral gap itself.

When attempting to generalise the proof of Bourgain–Dyatlov [8] to statistical mea-

sures, we will see that the Patterson–Sullivan measures that they consider will have the

incredibly useful property that µ(I) ≈ |I|dimµ for intervals I. We will desire the same

property in the statistical measure case for sufficiently small I. This will correspond

to ensuring that εr is made sufficiently small.

The following proof is very similar to that of Jordan–Sahlsten [26]. The difference is

that we must prove a decay result for blocks of words rather than just words themselves.

The result still gives exponential decay, but the bound will depend on the length of

the blocks required as you would expect. The main difference in the original proof is

that we must prove multiregularity of each word in certain blocks. This comes down

to some simple formalisation by isolating words in the blocks.

Proof. Parts (i), (ii), and (iii) are done in Jordan–Sahlsten [26] and the part (iv) follows

from the bounds for µ(Ia) and combining with the measure bound for µ(X \Rn).

It should be noted for part (i) that we need to take admissibility of the symbolic

space into account. Our definition of construction intervals is Ia := fa′(Ian), so by the

mean value theorem there exists some ξ ∈ Ian such that

|Ia| = |fa′(ξ)||Ian|

which holds since we consider inverse branches to be monotonic. So we can get regu-

larity bounds of |Ia| if f ′a has regularity bounds.

For the measure bound for µ(X \Rk
n), it is sufficient to prove that

k−1⋂
i=0

(T−1)ni
( n⋂
j=bεrnc

Aj(ε/2)
)
⊂ Rk

n

since we have that

µ(X \Rk
n) ≤ µ

(
X \

k−1⋂
i=0

(T−1)ni
( n⋂
j=bεrnc

Aj(ε/2)
)))

≤
k−1∑
i=0

µ
(
X \ (T−1)ni

( n⋂
j=bεrnc

Aj(ε/2)
))

≤ kµ
(
X \

( n⋂
j=bεrnc

Aj(ε/2)
))
≤ ke−δεrn/2
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where the details of the last inequality are given in Jordan–Sahlsten [26].

We now prove the claim. Let B ∈ (Nn)k be a word such that T nifBx ∈ Aj(ε/2) for

all i = 0, 1, . . . , k − 1 and all j = bεrnc, . . . , n. We want to prove that fBx ∈ Rk
n. By

definition of Rk
n, it is enough for us to prove that fBx ∈ IA for some A ∈ Rk

n. So we can

just prove that B ∈ Rk
n. By definition of Rk

n, we need to prove that I(σn)iB|j ⊂ Aj(ε)

for all i = 0, 1, . . . , k− 1 and j = bεrnc, . . . , n. If we have y ∈ X \Q, then T(σn)iB|jy is

a general point in I(σn)iB|j (we may equivalently consider the point T nifB|jy). So we

want to prove that f(σn)iB|jy ∈ Aj(ε). Using the assumptions on B we have that∣∣∣1
j
Sjψ(f(σn)iB|jy) + λ

∣∣∣ ≤ ∣∣∣1
j
Sjψ(f(σn)iB|jy)− 1

j
Sjψ(f(σn)iBx)

∣∣∣+
ε

2

=
ε

2
+

1

j
log
|f ′(σn)iB|j(f(σn)i+1By)|
|f ′

(σn)iB|j(f(σn)i+1Bx)|
≤ ε

2
+

exp(Bmaxb∈A |Ib|)
j

≤ ε

by choice of n, and using the fact that ε < εr. We can get the second to last inequality

by using Lemma 2.0.1. Now for the second condition we see that∣∣∣Sjϕ(f(σn)iB|jy)

Sjψ(f(σn)iB|jy)
− s
∣∣∣ ≤ ∣∣∣Sjϕ(f(σn)iB|jy)

Sjψ(f(σn)iB|jy)
−
Sjϕ(f(σn)iBx)

Sjψ(f(σn)iBx)

∣∣∣+
ε

2

≤ log 4C2

log(cθ2j)
+
ε

2
<

log 4C2

j log θ
+
ε

2
< ε

by following the proof of Lemma 5.2 in [26].

Lemma 2.2.5. For a,b ∈ Rn,

16−2C−2
ε,ne

−2λn ≤ |Iab| ≤ C2
ε,ne

−2λn.

Proof. This again follows by the mean value theorem. We get that for some ξ ∈ Ibn ,

|Iab| = |f ′ab′(ξ)||Ibn|.

By the chain rule, we get the result by the regularity bounds in Lemma 2.2.3.



Chapter 3

Multiplicative Convolutions

In the work of Jordan–Sahlsten, they bound the Fourier transform of the measure with

a Lebesgue integral. Making the integral Lebesgue means that the bounds of Kaufman

can be used, which arise from the use of integration by parts. However, there is a

multiplicative error applied to the Lebesgue integral which towards the end of the proof

forces the dimµ > 1/2 assumption. In the proof of Bourgain–Dyatlov, they do not

need their integrals to be Lebesgue; they bound the transform with exponential sums.

The exponential sums can then be bounded using the multiplicative convolution theory

of Bourgain [7]. Here we investigate whether this theory of multiplicative convolutions

can be applied to wider classes of measures using large deviation theory.

3.1 Multiplicative Convolutions and Exponential

Sums

To control exponential sums as in Bourgain and Dyatlov [8], we will use the following

Fourier decay theorem for multiplicative convolutions proved in this form by Bourgain

[7, Lemma 8.43] that follows from the discretized sum-product theorem. In [8] Bour-

gain and Dyatlov showed that by taking linear combinations of measures µj, one can

prove an analogous statement for multiplicative convolutions of several measures µj

with the growth assumption (1.1) on R replaced with a growth assumption for µj×µj
on R2. Then in the case of discrete measures µj, this implies the following decay

theorem for exponential sums:

Lemma 3.1.1 (Bourgain–Dyatlov [8]). Fix δ0 > 0. Then there exist k ∈ N, ε3, ε2 > 0

55
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depending only on δ0 such that the following holds. Let C0, N ≥ 0 and for j = 1, . . . , k

let Zj be finite sets such that ]Zj ≤ C0N . For η ∈ R with |η| > 1, assume that for

each j we have a map ζj : Zj → [C−1
0 , C0] such that for each σ ∈ [|η|−1, |η|−ε3 ],

#{(b, c) ∈ Z2
j : |ζj(b)− ζj(c)| ≤ σ} ≤ C0N

2σδ0 .

Then for some constant C1 depending only on C0 and δ0 we have that∣∣∣N−k ∑
b1∈Z1,...,bk∈Zk

exp(2πiηζ1(b1) . . . ζk(bk))
∣∣∣ ≤ C1|η|−ε2 .

However, in our case, due to the fluctuations arising from large deviations of the

ψ = − log |T ′|

potential, the maps ζj we obtain do not map the sets Zj into a fixed interval [C−1
0 , C0],

but when we increase |η|, the C0 will change and will actually blow-up polynomially

in |η|. Since the constant C1 in Lemma 3.1.1 depends on C0, it could cause problems

when we increase |η|. For this reason we will open up the argument of Bourgain and

Dyatlov (Proposition 3.2 of [8]) to give a more precise dependence on the constant C1

and C0 and have the following quantitative version:

Lemma 3.1.2. Fix ε0 > 0. Then there exist k ∈ N, ε2 > 0, ε3 > 0 depending only on

ε0 such that the following holds. Let R,N > 1 and Z1, . . . ,Zk be finite sets such that

]Zj ≤ RN . Consider η ∈ R with |η| sufficiently large. Suppose ζj, j = 1, . . . , k, on

the sets Zj satisfy for all j = 1, . . . , k that

(1) the range

ζj(Zj) ⊂ [R−1, R];

(2) for all σ ∈ [R−2|η|−1, |η|−ε3 ]

]{(b, c) ∈ Z2
j : |ζj(b)− ζj(c)| ≤ σ} ≤ N2σε0 .

Then there exists a constant c > 0 depending only on k such that we have that∣∣∣N−k ∑
b1∈Z1,...,bk∈Zk

exp(2πiηζ1(b1) . . . ζk(bk))
∣∣∣ ≤ cRk|η|−ε2 .
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Proof. Define a measure µj on R by

µj(A) = N−1]{b ∈ Zj : ζj(b) ∈ A}, A ⊂ R.

We begin by altering assumption (2). We have that

µj([x− σ, x+ σ]) ≤ σε0/2

for σ ∈ [R−2|η|−1, |η|−ε2/2] by using (2). Then µj(R) ≤ R and by the assumptions (1)

and (2) of the lemma we are about to prove, we have that the measure µj is a Borel

measure on [R−1, R] and that

(µj × µj)({(x, y) ∈ R2 : |x− y| ≤ σ}) ≤ σε0

for all σ ∈ [R2|η|−1, |η|−ε2 ]. Then to prove the claim, we just need to check that the

Fourier transform of the multiplicative convolutions of µj satisfies:

|(µ1 ⊗ · · · ⊗ µk)̂(η)| ≤ Rk|η|−ε2 . (3.1)

The rate of decay to be found will be given by

ε2 :=
1

10
min(ε4, ε3)

where ε3 and ε4 are given in Theorem 1.2.7.

Fix ` ∈ N such that 2` < R ≤ 2`+1. Then suppµj ∩ [R−1, R] can be covered by

intervals of the form I [i] := [2i−1, 2i] for i = −l, . . . , l, l+ 1. Let µ
[i]
j be µj restricted to

I [i]. Thus writing the re-scaling map

Si(x) = 2−ix, x ∈ R,

we have that the measure ν
[i]
j = Si(µ

[i]
j ) is supported on [1

2
, 1]. Moreover, it satisfies

(ν
[i]
j × ν

[i]
j )({(x, y) ∈ R2 : |x− y| ≤ σ}) ≤ (µj × µj)({(x, y) ∈ R2 : |x− y| ≤ 2iσ})

≤ (2iσ)ε0 ≤ 2Rσε0 ≤ σε0/2

where we use the fact that 2R ≤ σ−1/2 which holds by assuming that |η| > 4. We

know that the main assumption is satisfied for σ ∈ [2i|η|−1, 2i|η|ε3 ], so for the rescaled

measure, we get the main assumption for the required range σ ∈ [|η|−1, |η|ε3 ]. We will

use that fact that

(ν
[i1]
1 ⊗ · · · ⊗ ν [ik]

k )̂(η k∏
j=1

2−ij
)

= (µ
[i1]
1 ⊗ · · · ⊗ µ

[ik]
k )̂(η).
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Each µj is a sum of at most 2l + 2 of the restricted measures µ
[i]
j , in particular

µj =
l+1∑
i=−l

µ
[i]
j .

So the Fourier transform (µ1⊗ · · · ⊗ µk)̂(η) decomposes into at most (2l+ 2)k terms

consisting of Fourier transforms (µ
[i1]
1 ⊗ · · · ⊗ µ

[ik]
k )̂(η) going through all the possible

restrictions µ
[i]
j . More formally, this is because

µ1 ⊗ . . .⊗ µk =
l+1∑
ik=−l

. . .

l+1∑
i1=−l

µ
[i1]
1 ⊗ . . .⊗ µ

[ik]
k .

Hence if we can prove

|(ν [i1]
1 ⊗ · · · ⊗ ν [ik]

k )̂(η)| ≤ C∗|η|−ε2 (3.2)

for some constant C∗ > 0 only depending on k, the triangle inequality gives

|(µ1 ⊗ · · · ⊗ µk)̂(η)| ≤ 2(2l + 1)kC∗|2−lkη|−ε2 . RkC∗|η|−ε2 .

Thus let us assume from the start that µj is supported on [1
2
, 1], which we can do since

we reduce proving (3.1) to proving (3.2). As in [8], let us first argue that it is enough

to consider the case µ1 = µ2 = · · · = µk. Given λ = (λ1, . . . , λk) ∈ [0, 1]k, write

G(λ) := (µλ ⊗ · · · ⊗ µλ)̂(η) = µ̂⊗kλ (η).

and the linear combination

µλ = λ1µ1 + · · ·+ λkµk.

Consider each λj to be variables in [0, 1]. Expanding µ̂⊗kλ (η) using the definition of µλ

as a weighted sum of µj’s, we see that it is a sum of kk multiplicative convolutions

of the µj’s with coefficients given by products of λ1, . . . , λk. More formally, this is

because

µ⊗kλ =
k∑

ik=1

. . .

k∑
i1=1

λi1 . . . λikµi1 ⊗ . . .⊗ µik

and using linearity of the Fourier transform operator. Then if we know that (3.1)

holds for µ1 = · · · = µk, then we can apply it to µλ and obtain that

sup
λ∈[0,1]k

|G(λ)| = sup
λ∈[0,1]k

|µ̂⊗kλ (η)| ≤ C∗|η|−ε2
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since the claim of Fourier decay holds for each λ ∈ [0, 1]k. From this we see that the

map G is a polynomial of degree k. We can use the fact that the set of polynomials of

degree less than or equal to k, in k variables, is a vector space V . For G ∈ V , let C(G)

be the set of coefficients of the polynomial G. we can define two norms on this space:

(i) ||G||1 := supλ∈[0,1]k |G(λ)|;

(ii) ||G||2 := maxc∈C(G) |c|.

These norms are equivalent because the vector space is finite dimensional. Hence we

can say that for some C∗ > 0,

|∂λ1 . . . ∂λkG(λ)|λ=0 ≤ ||G||2 ≤ C∗||G||1

where the first inequality holds because the partial derivative is the coefficient of

λ1 . . . λk in G. So there is a constant C∗ > 0 such that

1

k!
|∂λ1 . . . ∂λkG(λ)|λ=0| ≤ C∗|η|−ε2 .

However,

|(µ1 ⊗ · · · ⊗ µk)̂(η)| = 1

k!
|∂λ1 . . . ∂λkG(λ)|λ=0|,

so this gives the claim.

As for the case µ1 = µ2 = · · · = µk, depending on the amount of mass µ1 has, we

have two cases.

If µ1(R) ≥ |η|−ε3ε0/10, choose an integer N such that N/2 ≤ |η| ≤ N . The proba-

bility measure

µ0 =
µ1

µ1(R)

on R satisfies

sup
x
µ0(B(x, σ)) < σε0/2

for all σ ∈ [4R−2N−1, N−ε3 ]. Similarly we have by applying the above for σ := 4R2σ

(when R > 1), we obtain this for σ ∈ [N−1, 4R2N−ε3 ] by monotonicity of µ, which

holds for |η|1−ε3 ≥ 16R4. Hence Theorem 1.2.7 proves the claim. Note that here the

constant dependence does not change.

If µ1(R) ≤ |η|−ε3ε0/10, then one can use a trivial bound on exponential function in

the integral convolution to obtain the claim. The desired decay can be achieved by

noting k ≥ 1 in this final case.
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3.2 Non-Concentrated Derivatives of Markov Maps

We will now see how we can apply the multiplicative convolution theorem to the case

of nonlinear dynamical systems. The following lemma is an application of the mean

value theorem which will allow us to use distortion factor analysis in the Fuchsian

group setting, and (Queffélec and Ramaré type-) continuant analysis in the Gauss

map case.

Lemma 3.2.1. Consider some interval Id and words a,b, c ∈ An such that a→ b→ d

and a→ c→ d. Consider a closed interval L ⊂ R. Then the set of points x ∈ Id such

that

f(x) := log
f ′ab(x)

f ′ac(x)
∈ L

is contained in some interval whose length is bounded above by

|L| ·max
x∈Id

∣∣∣f ′′ab(x)

f ′ab(x)
− f ′′ac(x)

f ′ac(x)

∣∣∣−1

.

Proof. We want to cover the set f−1(L) with an interval. Since f is continuous, there

exist points x1, x2 ∈ Id such that x1 and x2 are the end points of an interval that

contains the closed set f−1(L). By the Mean Value Theorem, we have that

|f(x1)− f(x2)|
|x1 − x2|

= f ′(ξ) for some ξ ∈ [x1, x2] ⊂ Id.

Hence it follows that

|f−1(L)| ≤ |x1 − x2| = |f ′(ξ)|−1 · |f(x1)− f(x2)| ≤ |L| ·max
x∈Id

∣∣∣f ′′ab(x)

f ′ab(x)
− f ′′ac(x)

f ′ac(x)

∣∣∣−1

as required.

In this section we will prove the following other distribution property for general

Markov maps in the regularised tree given by large deviations, which is similar to what

Bourgain and Dyatlov [8] employed. Recall the definition of blocks of words A and

B defined in the beginning of Section 2.1. For a ∈ An, we will define xa to be the

centre point of the interval Ia, and to study how the derivatives of inverse branches

distribute, we will define

ζj,A(b) :=
f ′aj−1b

(xaj)

e−2λn
.

Recall that we define R := 162CC3λ
ε,n where C > 0 is the Gibbs constant.
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Proposition 3.2.2. Assuming that T has non-concentrated derivative, then the fol-

lowing holds. Write W ⊂ Rk+1
n (ε) to be the set of “non-concentrated word blocks”

A defined such that for all j = 1, . . . , k, η ∈ Jτ(n)(ε) and σ ∈ [R(n, ε)−2|η|−1, |η|−ε3 ],

where we have that

]{(b, c) ∈ Rn(ε)2 : |ζj,A(b)− ζj,A(c)| ≤ σ} ≤ ]Rn(ε)2σc0/2.

Then most blocks are non-concentrated, so for some κ0 > 0,

e−λ(k+1)δn|Rk+1
n (ε) \W| ≤ C2κ0

ε,n σ
c0/4.

It is at this stage that we need to use blocks of words. This is so that we can put

the distribution condition on these blocks, so that we can satisfy the main assumption

of the exponential sum theorems. To prove Proposition 3.2.2, we need to split the

analysis into two parts depending on the distortion distance.

Lemma 3.2.3. Consider a ∈ Rn fixed. We have that for e−2λn ≤ σ ≤ C−4
ε,ne

−2εrλn,

the set

D2(a) :=
{

(b, c,d) ∈ R3
n :
∣∣∣f ′′ab(xd)

f ′ab(xd)
− f

′′
ac(xd)

f ′ac(xd)

∣∣∣ ≥ 1

2

√
σ, |f ′ab(xd)−f ′ac(xd)| ≤ e−2λnσ

}
has size less than or equal to 96C2eλC10λ

ε,n e
3λsnσs/2.

Remark 3.2.4. It is worth pointing out the range of σ considered in this lemma. This

lemma is not proved for general η here, unlike most other proofs. This is because this

proposition will only be used in the Gauss map and convex cocompact Fuchsian group

settings. In these situations, we consider η ∈ Jτ(n)(ε) where τ(n) = e−λn. This will

mean that the range of σ considered in Proposition 3.2.2 is sufficient, and moreso the

lower bound for σ considered is overkill. To be sure that the upper bound is sufficient,

we just have to consider ε > 0 small enough with respect to εr > 0, and εr > 0 small

enough with respect to ε3 > 0.

The following proof does get rather combinatorial and messy towards the end, but

the idea is straightforward. We end up having to count the number of construction

intervals given by regular words that are contained in some interval of a known max-

imum length. We want a bound from above, so we assume the worst case that the

given interval only contains regular intervals. We then compare the upper bound of
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the length of the interval to the approximate value of a j-regular interval, namely e−λj.

We then cover this interval in the maximum number of j-regular intervals, and then

count these intervals. This will give a maximum number of n-regular intervals.

Proof of Lemma 3.2.3. Consider words b and c also to be fixed. In this situation, we

only want to count the number of centre points xd.

We begin by rewriting the second condition in the definition of D2(a). By Lemma

2.2.5, we have that

16−2C−2
ε,ne

−2λn ≤ |Iab|, |Iac| ≤ C2
ε,ne

−2λn

and since by the chain rule |f ′ab(x)| = |f ′a(fb(x))||f ′b(x)| we must have the same bounds

for |f ′ab(x)| and |f ′ac(x)|. By the Mean Value Theorem, we have that

| log f ′ab(xd)− log f ′ac(xd)|
|f ′ab(xd)− f ′ac(xd)|

=
1

|ξ|
for some ξ ∈ [f ′ab(xd), f ′ac(xd)] ∪ [f ′ac(xd), f ′ab(xd)].

So we have that |ξ| ∈ [16−2C−2
ε,ne

−2λn, C2
ε,ne

−2λn]. As a result we see that

| log f ′ab(xd)− log f ′ac(xd)| ≤ 1

|ξ|
|f ′ab(xd)− f ′ac(xd)| ≤ 162C2

ε,ne
2λne−2λnσ = 162C2

ε,nσ.

So we have that D2(a) ⊂ D2(a,b, c)′ ×R2
n where

D2(a,b, c)′ :=
{

d ∈ Rn :
∣∣∣f ′′ab(xd)

f ′ab(xd)
− f ′′ac(xd)

f ′ac(xd)

∣∣∣ ≥ 1

2

√
σ,
∣∣∣ log

f ′ab(xd)

f ′ac(xd)

∣∣∣ ≤ 44C2
ε,nσ

}
By Lemma 3.2.1, we have that the set of centre points xd corresponding to the regular

words in D2(a,b, c)′ must be contained in an interval J of length at most 45C2
ε,n

√
σ.

Note that instead of counting the centre points xd, we can instead count the number of

corresponding intervals Id. However, it is important to note that there might exist at

most two intervals Id whose centre points do lie in J , but the intervals themselves are

not entirely contained in J . If we were to cover J with j-parents of n-regular intervals

who length are at least e(−λ−ε)j/4, then in the ‘worst case’ (when J does not contain

any irregular geometric points), then the number K of j-parent covering sets would

satisfy the last inequality in the following

45C2
ε,n

√
σ ≤ 45

96
e−λj−3εn/2 ≤ 11e−λj ≤ K

4
e−λj−εj.

So we can sufficiently choose aK ≥ 44eελn ≥ 44eεj, for exampleK = d44eελne ≤ 48Cλ
ε,n

where the inequality is true if we assume that n is large enough so that eελn ≥ 1.
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Given a j-parent Idj in the cover, we now approximate the number of n-regular

intervals Id (corresponding to the number of regular words which we wanted originally)

contained in this set. We will say that a ≺ b if and only if Ib ⊂ Ia, that is there exists

a finite word c such that b = ac. We see that by Lemma 2.2.3

#{d ∈ Rn : dj ≺ d}C−1e−λsnC−3λ
ε,n ≤ µ

( ⋃
d∈Rn:dj≺d

Id

)
≤ µ(Idj) ≤ Ce(−sλ+3λε)j

so we get that

#{d ∈ Rn : dj ≺ d} ≤ C3λ
ε,nC

2eλsne(−sλ+3λε)j.

So to conclude, we get that

#D2(a,b, c)′ ≤ KC3λ
ε,nC

2eλsne(−sλ+3λε)j ≤ 962C2eλC11λ
ε,n e

λsnσs/2

as required.

Now using Lemma 3.2.3, and assuming that T has non-concentrated derivative, we

can prove Proposition 3.2.2.

Proof of Proposition 3.2.2. Consider l ∈ Z such that e−λn ≤ 2−l ≤ 2e−λε3n/4, noting

that only finitely many such l exist. Define R∗l to be the set of n-regular pairs (a,d) ∈

R2
n such that

e−2λsn#{(b, c) ∈ R2
n : |f ′ab(xd)− f ′ac(xd)| ≤ e−2λn2−l} ≤ 2−(l+1)s/4.

For every σ ∈ [e−λn, e−λε3n/4] there is a unique l such that 2−l−1 ≤ σ ≤ 2−l. In this

setting, if we have a block A such that (aj−1, aj) ∈ R∗l for every j = 1, . . . , k and every

l, then by definition of R∗l and by definition of ζj,A(b) we have that

e−2λsn#{(b, c) ∈ R2
n : |ζj,a(b)− ζj,a(c)| ≤ σ}

≤ e−2λsn#{(b, c) ∈ R2
n : |f ′aj−1b

(aj)− f ′aj−1c
(aj)| ≤ e−2λn2−l} ≤ 2−(l+1)s/4 ≤ σs/4.

This therefore tells us that⋂
j

⋂
l

{A : (aj−1, aj) ∈ R∗l } ⊂ W .

From this containment, we can say that a k + 1 block A is not in W if there exists at

least one position j in the block and a scale l such that the pair (aj−1, aj) /∈ R∗. So

to prove the lemma, it is enough to show that e−2λsn#{R2
n \R∗l } ≤ aCb

ε,ne
−λε3sn/16 for
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some a, b > 0. We achieve this bound by considering the counting measure ] on pairs

in R2
n and use Chebychev’s inequality to get an upper bound on #R2

n \R∗l . We apply

Chebyshev’s inequality to the counting function defined by

f(a,d) = e−2λsn#{(b, c) ∈ R2
n : |f ′ab(xd)− f ′ac(xd)| ≤ e−2λn2−l}

which gives us that

|{R2
n \ R∗l }| = ]{(a,d) ∈ R2

n : |f(a,d)| ≥ 2−(l+1)s/4} ≤ 2(l+1)s/4

∫
R2
n

|f | d]

= e−2λsn2(l+1)s/4]{(a,b, c,d) ∈ R4
n : |f ′ab(xd)− f ′ac(xd)| ≤ e−2λn2−l}.

By using the bound for ]Rn (recall Lemma 2.2.3(iv)) and the assumption that T has

non-concentrated derivative, we have the claim.

3.3 From Fourier transforms to Exponential Sums

To get a desired bound on the Fourier transform of µ, we use the ideas of Bourgain–

Dyatlov [8, Chapter 3] to be able to reduce our problem to studying exponential sums:

Lemma 3.3.1. Consider τ : N→ R, an exponentially decreasing function with τ > 0.

Define

Jτ(n)(ε) := {η ∈ R : τ(n)−1/4 ≤ |η| ≤ Cε,nτ(n)−1/2}

to be a corresponding set of frequencies. Assume that there exists some b > 0 such that

µ× µ({(x, y) ∈ X2 : |x− y| ≤ Cε,nτ(n)1/4}) ≤ τ(n)b.

Then we have that the size of the generalised Fourier transform squared is bounded

from above by

C9λ(2k+2)
ε,n e−λ(2k+1)sn

∑
A∈Rk+1

n

sup
η∈Jτ(n)(ε)

∣∣∣ ∑
B∈Rkn

e2πiηζ1,A(b1)...ζk,A(bk)
∣∣∣+CRµ(X\Rk+1

n )2+E(n)

for some CR > 0, where E(n) is an approximation term which decays exponentially

with respect to n for small enough ε, namely

E(n) := C1δ
n + 64C ′eλC0Cε,ne

−λsn/4 + τ(n)b

for some C1 > 0.
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Remark 3.3.2. We shall present the proof for the case when we have a finite alphabet.

The Gauss map case is presented in [53]. The proof presented there can also be extended

to countable Markov maps whose transition matrix has no entries equal to zero. In the

Gauss map case, the transfer operator is global over the space X, and does not differ

over construction intervals Ib for b ∈ A because all words are admissible. In the finite

alphabet case, the always-admissible property is unnecessary. This will be proven to be

the case by slightly modifying the proof presented in [54], which follows the framework

of Bourgain–Dyatlov [8].

Fix a frequency ξ ∈ R. Assume we are given some τ(n) > 0 which is exponentially

decreasing with n. Let n ∈ N be the number such that

τ(n)−1/2e(2k+1)λn ≤ ξ ≤ τ(n+ 1)−1/2e(2k+1)λ(n+1).

Recall that

#Rn ≤ CC3λ
ε,ne

λsn

and if a ∈ Rn, we have that for all x ∈ X

wa(x) ≤ C3λ
ε,ne

−λsn.

Write

h(x) := exp(2πiξx).

Given a word a, we shall define xa ∈ Ia to be the centre point of this construction

interval. Recall the definition of blocks of words A and B defined in the beginning of

Section 2.1. Given j ∈ Nk and some regular word b ∈ Rn, we define the real number

ζj,A(b) := e2λnf ′aj−1b
(xaj

).

By the chain rule we have that

ζj,A(b) = e2λnf ′aj−1
(fbxaj

)f ′b(xaj).

Hence by Lemma 2.2.3 we have that

Lemma 3.3.3.

ζj,A(b) ∈ [16−2C−2
ε,n, C

2
ε,n]
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This holds because f ′aj−1
and f ′b must both be either positive or negative because

they are defined by words of the same length. Later, we will use the fact that

ζj,A(b) ∈ [16−2C−1C−3λ
ε,n , 162CC3λ

ε,n]

where C is the Gibbs constant. This is basically so that we have a universal C0 that

can be used in our extension of Bourgain–Dyatlov’s exponential sum theorem.

Since µ is invariant under the transfer operator L∗ϕ:

µ = L∗ϕµ

we obtain immediately the following estimate

Lemma 3.3.4. Recall the definition of Rk
n in Definition 2.2.2. For h(x) := e−2πiξΦ(x)g(x)

we have that∣∣∣ ∫ h(x) dµ(x)
∣∣∣2 ≤ 2

∣∣∣∑
A,B

∑
b:A→b

∫
h(fA∗B(x))wA∗B(x) dµ(x)

∣∣∣2
+ 4C2C2

gµ(X \Rk+1
n )2

where the sum is over A ∈ Rk+1
n and B ∈ Rk

n.

Proof. By the invariance of the transfer operator∫
X

h(x) dµ(x) =

∫
X

L(2k+1)n
ϕ h(x) dµ(x) =

∑
b∈A

∫
Ib

(Lnϕ)2k+1h(x) dµ(x).

This splits using Rk
n and (An)k \ Rk

n to∣∣∣ ∑
b:A→b

∫
Ib

∑
A∈Rk+1

n

B∈Rkn

wA∗B(x)h(fA∗Bx) dµ
∣∣∣+∣∣∣ ∑

b:A→b

∫
Ib

∑
A∈(An)k+1\Rk+1

n

or B∈(An)k\Rkn

wA∗B(x)h(fA∗Bx) dµ
∣∣∣.

We shall bound the right hand side by considering that∣∣∣ ∑
b:A→b

∫
Ib

∑
A∈(An)k+1\Rk+1

n

or B∈(An)k\Rkn

wA∗B(x)h(fA∗Bx) dµ
∣∣∣

≤
∑
b:A→b

∫
Ib

∑
A∈(An)k+1\Rk+1

n

or B∈(An)k\Rkn

wA∗B(x)|g(fA∗Bx)| dµ(x)

≤
∑
b:A→b

∑
A∈(An)k+1\Rk+1

n

or B∈(An)k\Rkn

CCgµ(IA∗B)

≤ (#A)CCgµ(X \Rk+1
n ) + (#A)CCgµ(X \Rk

n)

≤ 2(#A)CCgµ(X \Rk+1
n )
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where we use the assumption that ||g||C1 ≤ Cg. We get the required result by noting

that Rk+1
n ⊂ Rk

n, which follows by the fact that for any A ∈ Rk+1
n we have that there

exists B ∈ Rk
n such that B ≺ A. Conclude using |a + b|2 ≤ 2|a|2 + 2|b|2 for complex

numbers.

From now on we will always consider blocks A ∈ Rn(ε)k+1 and B ∈ Rn(ε)k. This

is because all other blocks can be ignored by Lemma 3.3.4. To control the above sums,

we will rely on the local variation assumption of the potential ϕ defining the Gibbs

measure and the bounded distortion assumption on T . First of all, since the distortion

|(log f ′a)′(z)| is uniformly bounded over a ∈ Nn and z ∈ X, we obtain the following:

Lemma 3.3.5. For the value δ > 0 coming from the local variation assumption of the

potential ϕ, we have that∣∣∣ ∫ h dµ
∣∣∣2 ≤ CC9λ(2k+1)

ε,n e−(2k−1)λsn
∑
b:A→b

∑
A,B

∣∣∣ ∫
Ib

eiξΦ(fA∗B(x))wak(x)dµ(x)
∣∣∣2 + E1

where

E1 := C1C
9λ(2k+2)
ε,n δn + 64C ′eλC0Cε,ne

−λsn/4 + CRµ(X \Rk+1
n )2

for some constants C ′, CR, C1 > 0 and sufficiently small ε > 0.

Part of the proof requires us to compare a Birkhoff weight evaluated at two dif-

ference points in the same regular interval. We do this using Hölder regularity of the

measure’s potential.

Proof. Choose a point y ∈ X such that xak = fak(y). Then we have that

wA#B(fakx)

wA#B(xak)
= exp(S2knϕ(fA∗B(x))− S2knϕ(fA∗B(y))).

Since ϕ is locally Hölder, we know that there exists a constant C > 0 and 0 < δ < 1

such that for any m ∈ N we have

sup
w∈Nm

sup{|ϕ(u)− ϕ(v)| : u, v ∈ Iw} ≤ Cδm.

This gives as |A ∗B| = (2k + 1)n that

|S2knϕ(fA∗B(x))− S2knϕ(fA∗B(y))| ≤
2kn−1∑
j=0

Cδ2kn+n−i ≤ C

1− δ
δn+1 =: C0δ

n+1.
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Hence

exp(−C0δ
n) ≤ wA#B(fakx)

wA#B(xak)
≤ exp(C0δ

n).

Rearranging this result we have that

|wA#B(fakx)− wA#B(xak)| ≤ max{| exp(±C0δ
n)− 1|}wA#B(xak).

Since |eiξϕ(x)| ≤ 1 we have by the triangle inequality

|h(fA∗Bx)− eiξϕ(fA∗Bx)g(xa0)| ≤ |g(fA∗Bx)− g(xa0)|

≤ Cg|fA∗B(x)− xa0| ≤ CgCε,ne
−λn

where the last inequality holds since fA∗B(x), xa0 ∈ Ia0 , and the previous holds because

g is Lipschitz (by assumption). Therefore by defining the constant weight gA#B :=

wA#B(xak)g(xa0) we have that for some C > 0,

|h(fA∗Bx)wA∗B(x)− gA#Be
iξΦ(fA∗Bx)wak(x)|

≤ |h(fA∗Bx)− eiξΦ(fA∗Bx)g(xa0)wA∗B(x)|

+ |g(xa0)| · |wak(x)| · |wA#B(fakx)− wA#B(xak)|

≤ CC3λ(2k+1)+1
ε,n e−(2k+1)λsn−λn + CC3(2k+1)λ

εn e−(2k+1)λsnδnLH

where we use that fact that wA∗B(x) = wA#B(fak(x))wak(x). Comparing this with

the integral on the right hand side of Lemma 3.3.4 we see that∣∣∣∑
A,B

∑
b:A→b

∫
Ib

h(fA∗B(x))wA∗B(x) dµ(x)−
∑
A,B

gA#B

∑
b:A→b

∫
Ib

h(fA∗Bx)wak(x) dµ(x)
∣∣∣

≤
∑
A,B

∑
b:A→b

∫
Ib

|h(fA∗Bx)wA∗B(x)− gA#Bh(fA∗Bx)wak(x)| dµ(x)

≤ (#A)
∑
A,B

CC9λ
ε,ne

−(2k+1)λsn · (e−λn + δn) ≤ C1C
9λ(2k+2)
ε,n (δn/2 + e−λn/2)

by choice of ε with respect to δ. Using Hölder’s inequality we get that∣∣∣∑
A,B

wA#B(xak)
∑
b:A→b

∫
Ib

h(fA∗Bx)wak(x) dµ(x)
∣∣∣2

≤ CC9λ(2k+1)
ε,n e−(2k−1)λsn

∑
A,B

∑
b:A→b

∣∣∣ ∫
Ib

h(fA∗Bx)wak(x) dµ(x)
∣∣∣2

Using |a+ b|2 ≤ 2|a|2 + 2|b|2 for a, b ∈ C, we get the result.
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Now we are ready to finish the proof of Lemma 3.3.1. The end of the following

proof again uses the idea of approximating a set using regular intervals to be able to

get a sufficiently decaying bound on the measure of the set.

Proof of Lemma 3.3.1. First of all,

|µ̂(ξ)|2 ≤ CC9λ(2k+1)
ε,n e−λ(2k−1)sn

∑
A,B

∑
b:A→b

∣∣∣ ∫
Ib

h(fA∗B(x))wa′k
(x) dµ(x)

∣∣∣2 + E1.

The first term on the right-hand side of the above inequality is∑
A,B

∑
b:A→b

∣∣∣ ∫
Ib

h(fA∗B(x))wa′k
(x) dµ(x)

∣∣∣2,
which, when opening up, is equal to∑

A

∑
b:A→b

∫
I2b

wa′k
(x)wa′k

(y)
∑
B

e2πiξ(Φ◦fA∗B(x)−Φ◦fA∗B(x)) dµ(x) dµ(y).

Taking absolute values, and using the bound for wa′k
(x), this is bounded from above

by

CC6λ
ε,ne

−2λsn
∑
A

∑
b:A→b

∫
I2b

∣∣∣∑
B

e2πiξ(Φ◦fA∗B(x)−Φ◦fA∗B(x))
∣∣∣ dµ(x) dµ(y).

Consider a fixed block A. Given x, y ∈ X, define x̂ := fak(x) and ŷ := fak(y) both

of which are in Iak . We also have that fA∗B(x) = fA#B(x̂) and fA∗B(y) = fA#B(ŷ).

By the Fundamental Theorem of Calculus we have that

Φ ◦ fA∗B(y)− Φ ◦ fA∗B(x) =

∫ ŷ

x̂

(Φ ◦ fA#B)′(t)dt.

By applying the Chain rule k times, we have that there exists ti ∈ Iai for i = 1, . . . , k

such that

(Φ ◦ fA#B)′(t) = Φ′(fA#Bt)f
′
a0b1

(t1)f ′a1b2
(t2) . . . f ′ak−1bk

(tk)

where tk = t. Lemma 2.0.1 gives us that

exp(−2|xai − ti|) ≤
f ′ai−1bi

(ti)

e−2λne2λnf ′ai−1bi
(xai)

≤ exp(2|ti − xai |)

where the upper bound is direct, but the lower bound is achieved by swapping xai and

ti in the lemma. We also have that |xai − ti| ≤ Cε,ne
−λn because both points are in

Iai . Hence using the definition of ζi,A(bi) we have that

exp(−2kCε,ne
−λn) ≤ (Φ ◦ fA#B)′(t)

Φ′(xa0)e
−2kλnζ1,A(b1) . . . ζk,A(bk)

≤ exp(2kCε,ne
−λn).
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We shall denote the denominator of the above fraction by Pk to see that by rearranging

we have

[exp(−2kCε,ne
−λn)− 1]Pk ≤ (Φ ◦ fA#B)′(t)− Pk ≤ [exp(2kCε,ne

−λn)− 1]Pk.

So by integrating between ŷ and x̂ we get that

[exp(−2kCε,ne
−λn)− 1]Pk(ŷ − x̂) ≤ Φ ◦ fA∗B(x)− Φ ◦ fA∗B(y)− Pk(ŷ − x̂)

≤ [exp(2kCε,ne
−λn)− 1]Pk(ŷ − x̂).

Since ŷ, x̂ ∈ Iak and ζi,A ∈ [C−2
ε,n, C

2
ε,n], we have that |Pk| ≤ Ck

ε,ne
−2kλn and so

|Φ ◦ fA∗B(x)− Φ ◦ fA∗B(y)− Pk(ŷ − x̂)| ≤ e2kCk+2
ε,n e

−(2k+2)λn.

We define

η :=
ξ

2π
· e−2kλnΦ′(xa0)(x̂− ŷ).

By the Mean Value Theorem and using the regularity bounds on |f ′ak | we get that

C−1
ε,ne

−λn|x− y| ≤ |x̂− ŷ| ≤ Cε,ne
−λn|x− y| and hence we have that

C−1
ε,nτ

−1/2|x− y| ≤ |η| ≤ Cε,nτ
−1/2

where we use the fact that I is bounded for the upper bound. Using the fact that the

map x→ eix is Lipschitz, we get that∣∣∣∑
B

e2πiξ(Φ◦fA∗B(x)−Φ◦fA∗B(x))
∣∣∣

≤
∣∣∣∑

B

e2πiζ1,a(b1)...ζk,a(bk)
∣∣∣+
∣∣∣∑

B

e2πiξ(Φ◦fA∗B(x)−Φ◦fA∗B(x)) − e2πiζ1,a(b1)...ζk,a(bk)
∣∣∣

≤
∣∣∣∑

B

e2πiζ1,a(b1)...ζk,a(bk)
∣∣∣

+
∑
B

|2πξ(Φ ◦ fA∗B(x)− Φ ◦ fA∗B(x))− 2πηζ1,a(b1) . . . ζk,a(bk)|

≤
∣∣∣∑

B

e2πiζ1,a(b1)...ζk,a(bk)
∣∣∣+
∑
B

2πe−λn/2

≤
∣∣∣∑

B

e2πiζ1,a(b1)...ζk,a(bk)
∣∣∣+ 2πCkC3kλ

ε,n e
(ks−1/2)λn

This gives us that the generalised transform is bounded from above by

C9λ(2k+2)
ε,n e−λ(2k+1)sn

∑
A∈Rk+1

n

∑
b:A→b

∫
I2b

∣∣∣∑
B

e2πiηζ1,a(b1)...ζk,a(bk)
∣∣∣ dµ(x) dµ(y) + E3



3.3. FROM FOURIER TRANSFORMS TO EXPONENTIAL SUMS 71

where

E3 := C ′C(2k+1)λ
ε,n e−λn/2 + C1δ

n + 64C ′eλC0Cε,ne
−λsn/4 + CRµ(X \Rk+1

n )2.

By the assumption on µ×µ, we can just consider our double integral where |x−y| ≥

Cε,ne
−λn/4, which in turn gives us that η ∈ Jτ(n)(ε). We conclude using the crude

containment which says that Rk+1
n ⊂ Rn, and the finiteness of A.



Chapter 4

The Gauss Map

4.1 Preliminaries

Given a finite word consisting of natural numbers a = (a1, a2, . . . , an) ∈ Nn for some

n ∈ N, define its continued fraction to be

[a] := [a1, a2, . . . , an] :=
1

a1 +
1

a2 +
1

. . .+
1

an

.

We use the fact given to us by number theory that for each irrational number x ∈

[0, 1] \Q, we can find a unique sequence of numbers ai(x) ∈ N such that

x = lim
n→∞

[a1(x), a2(x), . . . , an(x)].

We obtain an identification of the set of irrational numbers in [0, 1]\Q and countable

words consisting of natural numbers given by (a1, a2, . . .) ∈ NN.

Definition 4.1.1 (The Gauss Map). Define the Gauss map T : [0, 1] → [0, 1] as

follows

T (x) =


1
x

mod 1 x ∈ (0, 1]

0 x = 0.

72
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For fixed n ∈ N, the Gauss map is bijective on the intervals In = ( 1
n+1

, 1
n
], so we

can consider the inverse of T |In(x) = 1
x
− n; the inverse fn : [0, 1]→ In is given by

fn(x) :=
1

x+ n
.

We call the graph of the functions fn the inverse branches of the Gauss map T . From

now on, consider the Gauss map and its inverse branches given in Definition 4.1.1 on

the set of irrationals X := [0, 1] \Q. The Gauss map corresponds to the shift map σ

in NN.

Definition 4.1.2. We can rewrite the continued fraction for a finite word a = (a1, . . . , an)

in the following way:

[a1, . . . , an] =:
pn(a)

qn(a)

where pn(a), qn(a) ∈ N are coprime. We call the denominator qn(a) the continuant

of [a]. For k < n, we define qk(a) := qk(a|k) where a|k := (a1, . . . , ak) is the word

consisting of the first k letters of a.

Below are some useful relations about continuants. Define the mirror of a word

a = (a1, . . . , an) ∈ Nn to be a← = (an, . . . , a1).

Proposition 4.1.3. For a word a ∈ Nn we have that the following hold:

(i) qn(a) = anqn−1(a) + qn−2(a) (the recurrence relation for continuants);

(ii) pn(a) = anpn−1(a) + pn−2(a) (the recurrence relation for numerators);

(iii) qn(a) = qn(a←) and qn−1(a) = pn(a←) (invariance and recovery under mirroring);

(iv) qn(a)pn−1(a)− qn−1(a)pn(a) = (−1)n.

We control the derivatives of inverse branches by continuants using the following

lemma [26].

Lemma 4.1.4. For a ∈ Nn we have that

1

4
qn(a)−2 ≤ |f ′a| ≤ qn(a)−2.

This gives us the same bounds for the length of the intervals Ia.
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We can therefore control continuants for regular words in the same way as deriva-

tives using the following [26].

Lemma 4.1.5. Suppose a ∈ Rn and j = εr, . . . , n. Then

C−1
ε,ne

λj ≤ qj(a)2 ≤ 4Cε,ne
λj;

We will use the following quasi-independence lemma on continuants to be able to

analyse them as in [26] and [50].

Lemma 4.1.6. For a ∈ Nn, let b := (a1, . . . , an−k) be the first n− k digits of a, and

c := (an−k+1, . . . , an) be the last k digits for any 1 ≤ k < n. We have that

1

2
≤ qn(a)

qn−k(b)qk(c)
≤ 4.

A key property of the Gauss map we shall use is a sort of ‘invariance under reversing

words’. This turns out to be an analogue of Bourgain–Dyatlov considering inverses of

words.

Lemma 4.1.7. For a ∈ Rn we have that

1

16
C−1
ε,ne

−λn ≤ |Ia←| ≤ Cε,ne
−λn.

Proof. By invariance of continuants under mirroring we have that

1

16
C−1
ε,ne

−λn ≤ 1

4
qn(a)−2 =

1

4
qn(a←)−2 ≤ |Ia←| ≤ qn(a←)−2 = qn(a)−2 ≤ Cε,ne

−λn.

4.2 Distortion control

We begin by establishing that the Gauss map has non-concentrated derivative. In

particular, we will be looking at the distribution of distortions of the form

f ′′b(x)

f ′b(x)

so that we can prove the following:

Proposition 4.2.1. The Gauss map has non-concentrated derivative.
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The main tool that allows us to reduce the proof of Proposition 4.2.1 to properties of

continued fractions is that it turns out that the distortion differences between iterated

branches represented by words b and c can be controlled using the difference between

two corresponding geometric points represented by the reverse of these words:

Lemma 4.2.2. Let b, c ∈ Nn. Then we have for all x ∈ [0, 1] that

1

2

∣∣∣pn(b←)

qn(b←)
− pn(c←)

qn(c←)

∣∣∣ ≤ ∣∣∣f ′′b(x)

f ′b(x)
− f ′′c (x)

f ′c(x)

∣∣∣ ≤ 2
∣∣∣pn(b←)

qn(b←)
− pn(c←)

qn(c←)

∣∣∣.
The above lemma is central to identifying a proof of the non-concentration con-

dition, but the proof is quite straightforward. We will need a simple lemma on the

upper bound for distortion:

Lemma 4.2.3. For a ∈ Nn, for all z ∈ X we have that∣∣∣f ′′a (z)

f ′a(z)

∣∣∣ ≤ 2.

Proof. We have that

|(log |f ′a(x)|)′| =
∣∣∣( log

1

(qn−1(a)x+ qn(a))2

)′∣∣∣ = |(−2 log(qn−1(a)x+ qn(a)))′|

=
∣∣∣ 2qn−1(a)

qn−1(a)x+ qn(a)

∣∣∣ ≤ 2qn−1(a)

qn(a)
≤ 2.

Proof of Lemma 4.2.2. By the formula for f ′b and f ′c in terms of continuants and using

the reversal property, we have that

1

2

∣∣∣pn((b)←)

qn((b)←)
− pn((c)←)

qn((c)←)

∣∣∣ =
∣∣∣2qn−1(b)qn(c)− 2qn(b)qn−1(c)

2qn(b) · 2qn(c)

∣∣∣
≤
∣∣∣ 2qn−1(b)qn(c)− 2qn(b)qn−1(c)

(qn−1(b) + qn(b)) · (qn−1(c) + qn(c))

∣∣∣
≤
∣∣∣ 2qn−1(b)qn(c)− 2qn(b)qn−1(c)

(qn−1(b)xd + qn(b)) · (qn−1(c)xd + qn(c))

∣∣∣
=
∣∣∣ 2qn−1(b)

(qn−1(b)xd + qn(b))
− 2qn−1(c)

(qn−1(c)xd + qn(c))

∣∣∣
=
∣∣∣f ′′b(x)

f ′b(x)
− f ′′c (x)

f ′c(x)

∣∣∣ ≤ ∣∣∣2qn−1(b)qn(c)− 2qn(b)qn−1(c)

qn(b) · qn(c)

∣∣∣
= 2
∣∣∣qn−1(b)

qn(b)
− qn−1(c)

qn(c)

∣∣∣ = 2
∣∣∣pn((b)←)

qn((b)←)
− pn((c)←)

qn((c)←)

∣∣∣
as required.



76 CHAPTER 4. THE GAUSS MAP

We will often consider concatenated words, but to use a proof of Jordan–Sahlsten,

we will need to remove some concatenations.

Lemma 4.2.4 (Distance bounds for concatenating regular words). Given a word a ∈

Nn of length n, we have that

|[b←]− [c←]| ≤ |[(ab)←]− [(ac)←]|+ 2Cε,ne
−λn/2.

Proof.

|[b←]− [c←]| = |[b←]− [(ab)←] + [(ab)←]− [(ac)←] + [(ac)←]− [c←]|

≤ Cε,ne
−λn + |[(ab)←]− [(ac)←]|+ Cε,ne

−λn

≤ |[(ab)←]− [(ac)←]|+ 2Cε,ne
−λn/2.

Proof of Proposition 4.2.1. For a ∈ Rn, define

D1(a) :=
{

(b, c,d) ∈ R3
n :
∣∣∣f ′′ab(xd)

f ′ab(xd)
− f

′′
ac(xd)

f ′ac(xd)

∣∣∣ ≤ 1

2

√
σ, |f ′ab(xd)−f ′ac(xd)| ≤ e−2λnσ

}
and recall the definition of D2(a) in Lemma 3.2.3. To prove non-concentration, it will

be sufficient to bound the cardinality of D1(a) ∪D2(a). Define

R := {(a,b, c) ∈ Rn : |[(ab)←]− [(ac)←]| ≤
√
σ}.

By Lemma 4.2.2, we have that D2(a) ⊂ R. Note that

R = R2
n × {b ∈ Rn : |[(ab)←]− [(ac)←]| ≤

√
σ} =: R2

n ×R′

So it will be sufficient to get a cardinality bound for R′. By Lemma 4.2.4, and since

e−λn/2 ≤
√
σ we have that

R′ ⊂ {b ∈ Rn : |[b←]− [c←]| ≤ 3Cε,n
√
σ} =: R′′.

By demanding that

3
√
σ ≤ 3

96
e−λj−

7
2
εn ≤ 3rj

qn(c)

we have that R′′ ⊂ Bj in the proof of Lemma 6.8 in the paper of Jordan–Sahlsten [26]

(see the sentence before their Lemma 2.6 is used in the middle of page 24), and they
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get that #Bj ≤ 2C3λ
ε,ne

λsne−sλj (they do so using their bound for a set Cj). For the

given σ, choose j such that

1

λ

(
− λ− 7

2
εn+ log

( 1

96
√
σ

))
≤ j ≤ 1

λ

(
log
( 1

96
√
σ

)
− 7

2
εn
)
.

This upper bound for j is equivalent to the demand made to have that R′′ ⊂ Bj. Also,

the lower bound is such that j is contained in an interval of length 1, so there is at

least one choice for j (if the left hand bound is negative, 0 is a valid choice for j since

the upper bound is non-negative). The lower bound for j is equivalent to

1

96
e−λe−λj−

7
2
εn ≤

√
σ.

So we have that

|Bj| ≤ 192eλC7λ
ε,ne

λsnσs/2.

Following the containment arguments given at the start of this proof, we get that

#D1(a) ≤ αC6λ
ε,ne

3λsnσs/2

where α is some positive constant. Using this fact in conjunction with Lemma 3.2.3

gives a sufficient bound for the cardinality of D1(a) ∪D2(a).

Remark 4.2.5. Proving polynomially decaying Fourier transform for measures in-

variant under a generalised continued fraction maps should indeed be possible. The

central reason for this is due to there being a direct analogue of continuants which

obey a recurrence relation. This means that we should be able to get a proof using the

Gauss map case. The main work involved would be dealing with the fact that most of

these maps have both strictly increasing and decreasing branches. I don’t think this

would be a problem for most of the proof, but the ideas of Queffélec and Ramaré used

in Jordan–Sahlsten’s paper may be bothersome to formalise.

4.3 Polynomial Fourier decay

Our aim will be to prove the following improvement of Jordan–Sahlsten [26]:

Theorem 4.3.1. Let µ be an equilibrium state for the Gauss map with positive Haus-

dorff dimension satisfying the thin tail condition: there exists p > 0 such that

µ(x ∈ X : an(x) ≥ n) = O(n−p), n→∞.
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Then the Fourier transform µ̂(ξ)→ 0 as |ξ| → ∞ at a polynomial rate.

To be able to apply relevant large deviation results, we need to make sure that the

values of n that we consider are sufficiently large. The conditions that will be laid

out now are analogous of those given in Section 5 page 15 of Jordan–Sahlsten [26].

Assuming that εrn-level regularity is required, we first assume that εr = m−1 > 0 for

some m ∈ N. If this is not the case, we can simply make εr smaller so that this is so.

We begin by choosing n0 so that m|n0, as well as the following:

1. If n1 is the generation that arises from the main large deviation theorem, then

we require

n0εr > n1

to ensure we have valid regularity at each scale that we need.

2. If θ is the rate of expansion of (T n)′ with respect to n, and C is the Gibbs

constant for µ, we require

log 4

εrn0

< ε2,
log 4C2

log(θ2εrn0)
< ε/2 and

e−δεrn0

1− e−δ
< e−δεrn0/2

to ensure that we get decay on multiregular blocks of words.

3. Finally we require that
1

192
e(λ/2−2ε)n0 ≥ 1

to use part of the proof of Lemma 6.8 in the paper of Jordan–Sahlsten [26] as

used in the proof of Proposition 4.2.1.

Let us now begin the proof of Theorem 4.3.1. Let s = dimH µ and λ the Lyapunov

exponent of µ. Write s0 = κ/2 from the nonlinearity assumption for T and µ. Let

k ∈ N and ε2 > 0 from Lemma 3.1.1.

Fix a frequency ξ ∈ R. Let n ∈ N be the number such that ξ = sgn ξ · %e(2k+3/2)n

where % ∈ [1, e2k+3/2]. Recall that

#Rn ≤ CC3λ
ε,ne

λsn

and if a ∈ Rn, we have for all x ∈ X,

wa(x) ≤ C3λ
ε,ne

−λsn.

Write

h(x) := e−2πiξΦ(x)g(x).
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4.3.1 Applying the decay of exponential sums

It is important to recall what was mentioned in Remark 3.3.2 here, because we actually

use a different proof of Lemma 3.3.1. The complete proof is given in [53], and is almost

identical, but works for the infinitely branched Gauss map. We begin by proving the

assumption required to use Lemma 3.3.1.

Proposition 4.3.2. The main assumption of Lemma 3.3.1 about µ× µ holds for the

Gibbs measures for the Gauss map with τ = e−λn.

Proof. By covering the n-regular part of the following set with bn/4c-generation parent

intervals, for fixed y ∈ X we have that

µ({x ∈ X : |x− y| ≤ C0e
−λn/4})

≤ µ(X \Rn) + µ({x ∈ Rn : |x− y| ≤ C0e
−λn/4})

≤ µ(X \Rn) +
⌈ 2C0e

−λn/4

C−1
ε,ne

−λbn/4c/16

⌉
e−λsbn/4c

≤ µ(X \Rn) + 64C0Cε,ne
−λs(n/4−1)

≤ µ(X \Rn) + 64eλC0Cε,ne
−λsn/4.

Hence we have that

µ× µ({(x, y) ∈ X2 : |x− y| ≤ C0e
−λn/4}) ≤ µ(X \Rn) + 64eλC0Cε,ne

−λsn/4

as required.

We move on to remove ‘concentrated’ blocks from consideration in Lemma 3.3.1.

We see that for some a′ > 0,

C9λ(2k+2)
ε,n e−(2k+1)λsn

∑
a∈Rk+1

n \W

sup
η∈Jn

∣∣∣ ∑
B:A↔B

e2πiηζ1,A(b1)...ζk,A(bk)
∣∣∣

≤ C9λ(2k+2)
ε,n e−(2k+1)λsn

∑
A∈Rk+1

n \W

sup
η∈Jn

∑
B:A↔B

1

≤ C9λ(2k+2)
ε,n e−(2k+1)λsn

∑
A∈Rk+1

n \W

CkC3λk
ε,n e

kλsn

≤ aCkC11(2k+2)λ
ε,n e−(k+1)λsne(k+1)λsneε2λsn/20

= a′C33λk
ε,n e−ε2λsn/20.
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Hence we have that∣∣∣ ∫ h(x) dµ(x)
∣∣∣2 ≤ C9λ(2k+2)

ε,n e−kλsn max
A∈W

sup
η∈Jn

∣∣∣ ∑
B:A↔B

e2πiηζ1,A(b1)...ζk,A(bk)
∣∣∣

+ a′C33λk
ε,n e−ε2λsn/20 + 27C2C2

ε,ne
λ(k + 1)2e−δn/8 + C1δ

2n.

Note that by the regularity bounds for the measure of construction intervals, since

µ is a probability measure, we have that |Rn| ≤ CC3λ
ε,ne

sλn. Let η ∈ Jn. Recall that

s0 = min{κ, s}/4.

By the definition of Jn and the definition of W , we have

]{(b, c) ∈ R2
n : |ζj,A(b)− ζj,A(c)| ≤ σ} ≤ e2λsnσs0

Note that also ζj,A(b) ∈ [16−2C−1C−3λ
ε,n , 162CC3λ

ε,n]. Thus we may apply Lemma

3.1.2 to the maps ζj,A. It implies that there exists some d > 0 depending only on s

and k such that for all A ∈ W and η ∈ Jn,

C9λ(2k+2)
ε,n e−kλsn

∣∣∣ ∑
B:A↔B

e2πiηζ1,a(b1)...ζk,a(bk)
∣∣∣ ≤ dC3kλ

ε,n |η|−ε2 ≤ dC3kλ
ε,n e

−ε2λn/4.

Thus we have proved∣∣∣ ∫ h(x) dµ(x)
∣∣∣2 ≤ dC3kλ

ε,n e
−ε2λn/4 + a′C33kλ

ε,n e−ε3λsn/20 +DC2
ε,ne

−δn/8 + C1δ
2n.

By making sure that ε is chosen such that 33λkε ≤ ε2s/20, the proof of Theorem

4.3.1 is complete.
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General Nonlinear Maps

5.1 Naud’s Theory for Cantor Sets

5.1.1 Non-integrability condition

Let A ⊂ N be a finite alphabet for the Markov map T ∈ C2. Assume that the sets

Ia for a ∈ A are pairwise disjoint. Assume that the map is piecewise increasing for

simplicity. Our potential of interest is −ψ = log |T ′| which is differentiable if we make

the aforementioned assumption. For ξ, η ∈ AN, define the temporal distance function

to be

ϕξ,η(u, v) := ∆ξ(u, v)−∆η(u, v)

where

∆ξ(u, v) := lim
n→∞

n−1∑
j=0

log |T ′(T jfξ|nu)|.

To simplify ∆ξ(u, v), we use the fact that

n−1∑
j=0

log |T ′(T jfξ|nu)| = − log |f ′ξ|nu|

by the inverse and chain rule for differentiable functions. Hence we have that

∆ξ(u, v) = lim
n→∞

(
− log f ′ξ|nu+ log f ′ξ|nv

)
=: − log f ′ξu+ log f ′ξv

where we assume that the map is piecewise increasing. The main assumption of Naud’s

paper [44] is the following.

81
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Definition 5.1.1. Let K be the repeller of T [51]. We say that −ψ is not locally

integrable NLI if there exists j ∈ {1, . . . , k}, ξ, η ∈ AN such that for some u0, v0 ∈

K ∩ Ij,
∂ϕξ,η
∂u

(u0, v0) 6= 0.

There is a simpler definition if T and −ψ are real analytic which Dolgopyat uses

in a symbolic setting where they only need check if ϕξ,η is identically zero. Naud also

mentions that NLI is related to the following.

Definition 5.1.2. The potential −ψ is non-lattice if there is no function L : K → mZ

for some m > 0 and f : K → R where f is Lipschitz on K such that for all x ∈ K

log |T ′(x)| = f ◦ T (x)− f(x) + L(x).

Naud notes that NLI implies non-lattice, but not necessarily the other way around.

The non-lattice assumption is a weaker assumption than non-conjugacy to a linear map

because of the condition that L only not map to mZ rather than any set of positive

numbers (e.g. {π, 3} which isn’t a subset of any mZ).

Definition 5.1.1 can be simplified in the case we are interested in by noting that

∂ϕξ,η
∂u

(u0, v0) = −
f ′′ξ u0

f ′ξu0

+
f ′′η u0

f ′ηu0

which is the same as the distortion differences studied in [53], but here η, ξ are infinite

words. It should be noted that Proposition 5.5 for Naud [44] looks friendlier in our

setting due to dealing with finite words. Using Naud’s proof, we can prove an if and

only if version of [44, Proposition 5.5].

Proposition 5.1.3. The NLI holds for −ψ if and only if there exist M,m > 0 and

N0 such that for all N > N0 there exists words a,b ∈ AN such that for all u ∈ X,

m ≤
∣∣∣ d
du

(−SNψ ◦ fa + SNψ ◦ fb)(u)
∣∣∣ ≤M.

Proof. For the direction not covered by Naud, assume that NLI does not hold to

prove a contrapositive statement. Then the temporal distance function is identically

vanishing, that is, ϕw,v(x, y) ≡ 0 for all w,v ∈ A∞, x, y ∈ X, since T and −ψ



5.2. TOTALLY NONLINEAR MAPS 83

are real analytic. Define τ := −ψ. We have for all a ∈ A and w,v ∈ A∞ with

T (Iv1) ∩ T (Iw1) ⊃ Ia and x, y ∈ Ia that the derivative

∂ϕv,w

∂x
(x, y) =

d

dx
(Snτ(fw|n(x))− Snτ(fv|n(x)))

+
∑
k≥n

τ ′(fw|n(x))

T ′(fw|1(x)) . . . T ′(fw|(p−1)(x))

−
∑
k≥n

τ ′(fv|n(x))

T ′(fv|1(x)) . . . T ′(fv|(p−1)(x))

so we see that the vanishing temporal distance function ϕw,v(x, y) ≡ 0 implies that

for all n ∈ N, a,b ∈ An and x ∈ X:∣∣∣ d
dx

(Snτ(fa(x))− Snτ(fb(x)))
∣∣∣ ≤ D

γn
2‖τ ′‖∞
γ − 1

,

where γ > 1 and D > 0 are the constants from the expansion assumption of T and

‖τ ′‖∞ ≤ B <∞ by the bounded distortions assumption of T . Then by letting n→∞

we realise the required result.

Observe the main inequalities on inverse branches given in Proposition 5.1.3. They

do not involve a limit, and so is precisely that same as

m ≤
∣∣∣− f ′′au

f ′au
+
f ′′bu

f ′bu

∣∣∣ ≤M

which is our normal definition of distortion differences. This difference is what we refer

to as the distortion difference for words a and b. In Bourgain–Dyatlov, these can be

analysed nicely using distortion factors of Möbius transformations. In [53], we use the

tools from diophantine approximation presented in Jordan–Sahlsten using the ideas

of Queffélec and Ramaré. This reinforces the fact that complex transfer operators do

indeed seem to be a very reasonable tool for tackling this problem.

5.2 Totally Nonlinear Maps

It should also be noted that Araújo–Melbourne [2] uses a very similar statement of

the above proposition (for suspension flows) to define their uniform non-integrability

condition rather than Naud’s NLI. This is also very close to Proposition 7.5 of Avila–

Gouëzel–Yoccoz [3] except there are some direction fields involved. However, this

proposition is for Markov maps and does prove that non-conjugacy to a linear map
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implies the conclusion of Proposition 5.1.3. The following is part of Proposition 7.5 of

Avila–Gouëzel–Yoccoz.

Proposition 5.2.1. Let ∆ be a Riemannian manifold considered with Lebesgue mea-

sure. Let T be a uniformly expanding Markov map on an open partition {∆(l)} whose

union is a full Lebesgue measure subset of ∆. Let Hn be the set of inverse branches

of T n, and H := H1. Let r : ∆ → R be a C1 function on each set ∆(l) with

suph∈H ||D(r ◦ h)||C0 <∞. The following are equivalent:

(1) T is totally nonlinear. This means that is is not possible to write

r = ψ + ϕ ◦ T − ϕ

on a set X of full measure (not necessarily the entirety of ∆) where ψ : X → R

is constant on each set ∆(l) and ϕ : ∆→ R is measurable.

(2) There exists C > 0 such that there exists n ∈ N, two inverse branches h, k ∈ Hn,

and a continuous unitary vector field x 7→ y(x) such that for all x ∈ ∆,

|D(r(n) ◦ h)(x) · y(x)−D(r(n) ◦ k)(x) · y(x)| > C

where r(n) is the nth Birkhoff sum for r.

Remark 5.2.2. Note that in the setting of Naud to be considered, {∆(l)} will be

the domain of the dynamics which will not be a full Lebesgue measure subset of ∆.

However, it does have full measure when considering our measure supported on the

limit set. The proof of Proposition 5.2.1 can be modified to instead use this measure.

For our application, we will consider ∆ to be a large interval containing the domain

and range of T . We note that the only continuous unitary vector fields on ∆ are

constant ±1, hence the second condition in the proposition will be about our desired

distortion difference for r = log |T ′|.

5.2.1 Fourier Decay in the case of Totally-Nonlinear Dynam-

ics

We follow the setting and notations of Naud [44] and use the same notation. Let

I1, . . . , IN , N ≥ 2, be closed, disjoint and bounded intervals in X, and write X =
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a=1 Ia. Let T : X → R be a mapping such that each restriction Ta := T |Ia is a

real analytic map and assume T is conjugated to the full shift on AN, where A =

{1, . . . , N}. Moreover, we need that T also satisfies

(1) Uniform expansion: There exists γ > 1 and D > 0 such that for all n ∈ N and

all x ∈ X we have

|(T n)′(x)| ≥ D−1γn.

(2) Markov property : For all a, b = 1, . . . , N , if T (Ib)∩ Int(Ia) = ∅, then T (Ib) ⊃ Ia.

(3) Bounded distortions : Define the distortion function as

τ := log |T ′|.

Then there exists B <∞ such that

‖τ ′‖∞ = ‖T ′′/T ′‖∞ ≤ B.

(4) Total non-linearity : τ : X → R is not C1 cohomologous to a locally constant

function, that is it is not possible to write

τ = ψ0 + g ◦ T − g

on the set X where ψ0 : X → R is constant on every Ia ⊂ X, a ∈ A, and

g ∈ C1(∆).

Theorem 5.2.3 (Sahlsten–S, 2020 [54]). Suppose K satisfies conditions (1), (2), (3)

and (4) and let µ be an equilibrium state on K associated to a potential ϕ with expo-

nentially vanishing variations. If the Hausdorff dimension dimH µ is close enough to

dimHK, then the Fourier coefficients of µ tend to zero with a polynomial rate.

To prove this theorem, we require a slightly different version of Lemma 3.3.1.

This will reflect the fact that in Bourgain–Dyatlov, they achieve non-concentrated

derivatives of Fuchsian groups with c0 = δ/2 (see definition 1.3.2) where δ > 0 is the

Hausdorff dimension of the limit set of the Fuchsian group. This is a strong condition

and reflects the fact that they can prove the non-concentrated derivative assumption

by using distortion factor analysis. The same goes for the Gauss map case, where we

can get κ = dimµ/2 by using the continuant analysis presented in Jordan–Sahlsten
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[26]. In the general nonlinear setting, we do not have such tools to give these bounds.

The complex transfer operator theory will present a κ which could be arbitrarily small,

and depends only on the map T , not the dimension of the measure. This results in us

having to change the frequencies ξ that we consider, and so we use Lemma 3.3.1 with

τ = e−2ε0n.

5.3 Total non-linearity and non-concentration

In order to apply Lemma 3.1.2 in our setting, we will need to verify the non-concentration

assumption for the maps ζj = ζj,A which are defined by

ζj,A(b) = e2λnf ′aj−1b
(xaj)

for b ∈ Rn(ε) where A = a1 . . . ak ∈ Rk+1
n and xaj is the centre point of the interval

Iaj . Before we do this, we need to fix the parameters R and the range of σ we consider

needed for Lemma 3.1.2:

Remark 5.3.1. (1) For n ∈ N and ε > 0 the number

R = R(n, ε) := 162CC3λ
ε,n,

where C > 0 is the constant satisfying the Gibbs condition of µ, recall λ =
∫
τ dµ

is thee Lyapunov exponent of µ. Then for the map

ζj,A(b) = e2λnf ′aj−1b
(xaj

).

we see that

ζj,A(b) ∈ [R−1, R].

Indeed, the chain rule gives

ζj,A(b) = e2λnf ′aj−1
(fbxaj

)f ′b(xaj)

so we can apply Lemma 2.2.3 and the fact that f ′aj−1
and f ′b must both be either

positive or negative because they are defined by words of the same length.

(2) Let s0 > 0 be the unique solution to P (−s0τ) = 0 for the distortion function

τ(x) = log |T ′(x)|. Suppose 0 < δ = dimH µ < s0 = dimHK. Then choose Ξ ∈
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(0, 1) such that δ > s0 − δ0(Ξ) and that δ1(Ξ)/4 < λ/2, the Lyapunov exponent

of µ and δ0(Ξ) is from Theorem 5.3.2. Such Ξ exists as 0 < δ = dimH µ < s0 is

close enough to s0. Define

ε0 := δ1(Ξ)/4 > 0

Then also ε0 < λ and now fixes our Rn(ε), Rk
n(ε) and

Jn(ε) = {η ∈ R : eε0n/2 ≤ |η| ≤ Cε,ne
ε0n}

which all implicitly depend on ε0 > 0.

Let C1(I) be the set of all complex valued C1 functions g on X with the norm

‖g‖C1 := ‖g‖∞ + ‖g′‖∞.

Given ψ ∈ C1(I), define the transfer operator Lψ on the Banach space C1(I) by

Lψg(x) :=
∑

y:T (y)=x

eψ(y)g(y)

If s ∈ C, then in the case of the potential ψ = −sτ for the distortion function

τ = log |T ′|, the following was proved by Naud in [44, Theorem 2.3]:

Theorem 5.3.2 (C1-contraction of transfer operators). Under the assumptions of

Theorem 5.2.3, the following holds. Let Ξ > 0. Then there exists CΞ > 0, δ0(Ξ) > 0,

δ1(Ξ) > 0, t0(Ξ) > 0 such that for all Re s ∈ (s0 − δ0(Ξ), s0] and |Im s| ≥ t0(Ξ) we

have for all f ∈ C1(X) and m ∈ N that

‖Lm−sτf‖C1 ≤ CΞ|Im s|1+Ξe−δ1(Ξ)m‖f‖C1 ,

where s0 > 0 is the unique real number satisfying P (−s0τ) = 0 and P is the topological

pressure on K.

We will now give the key non-concentration estimate for distortions as a conse-

quence of Theorem 5.3.2.

Lemma 5.3.3 (Non-concentration). Let s0 > 0 be the unique solution to P (−s0τ) = 0

for the distortion function τ(x) = log |T ′(x)|. Suppose 0 < δ = dimH µ < s0. Then

there exists c0 > 0 and κ0 > 0 such that for all ε > 0, n ∈ N, η ∈ Jn(ε), σ ∈

[R(n, ε)−2|η|−1, |η|−ε3 ], x ∈ X we have

]{(a,b, c) ∈ Rn(ε)3 : |e2λnf ′ab(x)− e2λnf ′ac(x)| ≤ σ} . Cκ0
ε,nσ

c0]Rn(ε)3,
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where R(n, ε) and ε0 be the parameters fixed in Remark 5.3.1 and ε3 > 0 is from

Lemma 3.1.2.

Remark 5.3.4 (Idea of the proof). The following proof is very technical, but follows a

basic idea. In this remark we will explain the idea with limited technical details. Most

of the technicalities here will be in the set-up, which is necessary to be able to present

a believable proof idea.

We will define m so that σ ≈ e−ε0m. We can then define d to be the last m entries

of b, i.e. d := σn−mb noting an abuse of notation with σ being a number as well as

the shift mapping on words. We will say that d ∈ R̃m, which you can just think of

as being regular words of length m. In reality, they are words of length m which have

the same regularity bounds as a word in Rm. We cannot say precisely that d ∈ Rm,

but we do know that b ∈ Rn and b|n−m has (n−m)-regular bounds. We can then use

the quasi-Bernoulli property (Lemma 2.0.6) and the length concatenation property for

construction intervals (Lemma 2.0.5) to be able to say that d also has some m-regular

bounds, hence we say d ∈ R̃m.

For the proof, it is sufficient to bound

#{d ∈ R̃m : e2λnf ′ed(x) ∈ B(y, σ)}

where e := ab|n−m, by choosing y = e2λnf ′ac(x). We can then just bound

{d ∈ R̃m : − log |f ′ed(x)| ∈ J}

where J is some interval whose length can be approximated using the mean value theo-

rem. The length of J turns out to be approximately σ. We create a smooth ‘indicator

function’ h on J , where we make it smooth to be able to use Fourier analysis on it.

So what we will want to bound is

∑
d∈R̃m

h(− log |f ′ed(x)|)1/2

where the power of a half is only included for a nice use of the Cauchy–Schwarz in-

equality. We use Cauchy–Schwarz here to add weights to the sum, so we study

∑
d∈R̃m

|f ′ed(x)|δh(− log |f ′ed(x)|)1/2
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eπ/4

h
1 χJ

ξ

Figure 5.1: The function h, notably smooth and bigger than the indicator
for J .
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which will allow us to compare this sum to a complex transfer operator. It’s worth

noting that these weights will just contribute to the #R3
n bound in the end. Now we

apply Fourier inversion and recovery to h to get that our sum is∫
R
ĥ(ξ)

∑
d∈R̃m

|f ′ed(x)|δe2πiξ log |f ′ed(x)| dξ

which is valid by smoothness properties of h. We now split this integral into two regions

of frequencies.

The first region, where |ξ| < t0/2π is where we cannot use the main complex transfer

operator theorem by definition of some t0 > 0. This region is small however, so we can

just use basic bounds, along with |ĥ(ξ)| ≤ ||h||L1 ≤ 3|J |, which arises from definable

properties of h. This bound will be sufficient to get the desired non-concentration

bound.

For the second region, |ξ| > t0/2π, we can use our transfer operator bound. We

compare the sum in our integral to

Ln−s log |T ′|ge(x) =
∑
d∈Am

|f ′ed(x)|δe−2πiξ log |f ′ed(x)|

where ge(z) := |f ′e(z)|δ for z ∈ X. We can then use the bound in Theorem 5.3.2 to

conclude.

Remark 5.3.5. Theorem 5.3.2 is the key result that will give us the main theorem

for totally nonlinear maps. As such, the Re s ∈ (s0 − δ0(Ξ), s0] condition carries

through, and eventually leaves us with requiring us to assume that dimH µ =: Re s ∈

(s0−δ0(Ξ), s0]. We will say that this means that the dimension of the measure must be

‘large enough’. We believe that this assumption can be fully reduced to requiring that

dimH µ > 0. A proof has been presented in the latest version of [54]. There we use a

different contraction theorem used by Stoyanov [63] which gives more flexibility in the

real part of s. In particular, it can be defined using a potential ϕ, so we can consider

that to be the potential of the measure. The idea of the proof does not change so

much. Essentially the Cauchy–Schwarz inequality has to be applied slightly differently

to include the weights wd(x) arising from the use of the potential of the measure.

The norm for Stoyanov’s contraction theorem is also a Lipschitz norm, not the C1

norm. The Lipschitz norm requires using a slightly stronger application of integration

by parts when bounding the Fourier transform of the smooth indicator function. We
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do not consider this more general theorem here, because this addition was mainly done

by Tuomas Sahlsten (coauthor of [54]), and the use of Stoyanov’s contraction theorem

was pointed out by Jialun Li. It is also much easier to see how Naud’s contraction

theorem can be applied to our setting.

Proof. Recall the definition of An(ε) in Definition 2.2.2. Choose m ∈ N such that

e−ε0(m−1) ≤ σ ≤ e−ε0m. We will first prove that for all y ∈ R with y±e−ε0m ∈ [R−1, R],

e ∈ R̃2n−m(ε) and x ∈ I we have

]{d ∈ R̃m(ε) : e2λnf ′ed(x) ∈ B(y, e−ε0m)} . Cκ0
ε,me

−c0m]R̃m(ε), (5.1)

where

R̃m(ε) :=
{

d ∈ Am : Id ⊂ Am(2ε)
}

and

R̃2n−m(ε) :=
{

e ∈ A2n−m : Ie ⊂ A2n−m(2ε)
}
.

Then up to C2ε,n multiplicative error ]R̃m(ε) ∼ ]Rm(ε) and ]R̃2n−m(ε) ∼ ]R2n−m(ε)

by Lemma 2.2.3 for the properties of regular words, where by a ∼ b we mean b/c ≤

a ≤ cb with multiplicative error c > 0. Indeed, Lemma 5.3.3 follows now from (5.1)

by first setting P to be the set of pairs (e, y) such that y ± e−ε0m ∈ [R−1, R] and

e ∈ R̃2n−m(ε), and bounding

]{(a,b, c) ∈ Rn(ε)3 : |e2λnf ′ab(x)− e2λnf ′ac(x)| ≤ σ}

≤ ]Rn(ε) sup
c∈Rn(ε)

]{(a,b) ∈ Rn(ε)2 : |e2λnf ′ab(x)− e2λnf ′ac(x)| ≤ σ}

≤ ]Rn(ε)]R̃2n−m(ε) sup
(e,y)∈P

]{d ∈ R̃m(ε) : e2λnf ′ed(x) ∈ B(y, σ)}

since every ab, for a,b ∈ Rn(ε) splits into a word ab = ed with e := ab|2n−m ∈

R̃2n−m(ε) and d := σ2n−m(ab) ∈ R̃m(ε) using the quasi-Bernoulli property of the

Gibbs measure µ: since ab = ed, we have

µ(Ie)µ(Id) . µ(Iab) . µ(Ie)µ(Id)

and that the lengths

|Ie||Id| . |Iab| . |Ie||Id|.

Then fix (e, y) ∈ P . Since B(y, σ) ⊂ B(y, e−ε0m) we have by (5.1) that

]{d ∈ R̃m(ε) : e2λnf ′ed(x) ∈ B(y, σ)} . Cκ0
ε,me

−c0m]R̃m(ε)
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Note that e−c0m = e
− c0
ε0
ε0m . σc0/ε0 so the claim follows by the cardinality bounds of

R̃2n−m(ε) and R̃m(ε) by setting in the statement of the lemma the exponent c0 > 0

as c0/ε0.

Let us now verify the non-concentration estimate (5.1) we need.

Step 1. Write r := e−ε0m. Since y − r ≥ R−1 > 0, we know that e2λnf ′ed(x) ∈

B(y, r) if and only if

− log |f ′ed(x)| ∈ J := [2λn− log(y + r), 2λn− log(y − r)].

Note that the interval J has length |J | = log y+r
y−r . By the mean value theorem, we

have

2R−1r ≤ 2r

y + r
≤ |J | ≤ 2r

y − r
≤ 2Rr. (5.2)

Hence

]{d ∈ R̃m(ε) : e2λnf ′ed(x) ∈ B(y, e−ε0m)} = ]{d ∈ R̃m(ε) : − log |f ′ed(x)| ∈ J}

Step 2. Now let us approximate the indicator of χJ by a mollifier h ∈ C4(R) satisfying

(1) χJ ≤ h

(2) ‖h‖1 . |J |

(3) ‖h′′′′‖L1 . 1
|J |3 .

This function can be obtained, for example using a scaled and translated Gaussian

function

h(x) := e
π
4 g0

(x− xJ
|J |

)
, where g0(x) := e−πx

2

.

where xJ is the central point of J . Then Since χJ ≤ h, we have

]{d ∈ R̃m(ε) : − log |f ′ed(x)| ∈ J} ≤
∑

d∈R̃n(ε)

h(− log |f ′ed(x)|)1/2

We use Cauchy-Schwartz here, that is( ∑
d∈R̃m(ε)

h(− log |f ′ed(x)|)1/2
)2

≤
( ∑

d∈R̃m(ε)

|f ′ed(x)|δh(− log |f ′ed(x)|)
)( ∑

d∈R̃m(ε)

1

|f ′ed(x)|δ
)
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Step 3. Taking the inverse Fourier transform of ĥ gives us for all x ∈ X, d ∈ Am

and m ∈ N that

h(− log |f ′ed(x)|) =

∫
e−2πiξ log |f ′ed(x)|ĥ(ξ) dξ

Therefore

∑
d∈R̃m(ε)

|f ′ed(x)|δh(− log |f ′ed(x)|) =
∑

d∈R̃m(ε)

|f ′ed(x)|δ
∫
ĥ(ξ)e−2πiξ log |f ′ab(x)| dξ

=

∫
ĥ(ξ)

∑
d∈R̃m(ε)

|f ′ed(x)|δe−2πiξ log |f ′ed(x)| dξ

Split the integration now over |ξ| > t0/2π and |ξ| ≤ t0/2π.

Step 4. If |ξ| > t0/2π, we will estimate as follows. Inside the integral, use the

estimate

∑
d∈R̃m(ε)

|f ′ed(x)|δh(− log |f ′ed(x)|) ≤
∑
d∈Am

|f ′ed(x)|δh(− log |f ′ed(x)|)

We can iterate the definition of the complex transfer operator applied for g ∈ C1(X)

defined by

ge(z) := |f ′e(z)|s, z ∈ X

to obtain with s = δ − 2πξi that

Ln−sτge(x) =
∑
d∈Am

ge(fd(x))es log |f ′d(x)| =
∑
d∈Am

|f ′ed(x)|δe−2πiξ log |f ′ed(x)| (5.3)

whenever x ∈ X with d → x since |f ′e(z)|s = |f ′e(z)|δe−2πiξ log |f ′e(z)| and using the

chain rule. Here we will employ the C1 contraction, Theorem 5.3.2 with first a fixed

0 < Ξ < 1 to obtain

Re s = δ ∈ (s0 − δ0(Ξ), s0]

as long as δ = dimH µ ≥ s0 − δ0(Ξ) and

|Im s| = 2π|ξ| ≥ t0(Ξ)

by the choice of ξ. Thus we have for some δ1(Ξ) > 0 that
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∫
|ξ|>t0/2π

ĥ(ξ)
∑
d∈Am

|f ′ed(x)|δe−2πiξ log |f ′ed(x)| dξ

≤
∫

|ξ|>t0/2π

|ĥ(ξ)| · ||Ln−sτge||C1 dξ

≤
∫

|ξ|>t0/2π

|ĥ(ξ)| · CΞ|Im s|1+Ξe−δ1(Ξ)n‖ge‖C1 dξ

.Ξ Cε,ne
−λδ(2n−m)e−δ1(Ξ)n

∫
|ξ|>t0/2π

|ĥ(ξ)| · |ξ|2+Ξ dξ

where χI is the constant function on I. Here we used the bounded distortion for T to

bound the C1 norm of ge. First of all, we have

|ge(z)| = |fe(z)|δ ≤ Cε,ne
−λδ(2n−m) and |g′e(z)| . |ξ||fe(z)|δ ≤ Cε,ne

−λδ(2n−m)|ξ|

so

‖ge‖C1 . Cε,ne
−λδ(2n−m)|ξ|.

Indeed, after fixing a branch of the logarithm, using bounded distortion |f ′′e (z)| ≤

B|f ′e(z)|, and |s| . |ξ|, we obtain that

|ge(z)| = |s|
|f ′e(z)|

| exp(s log |f ′e(z)|)||f ′′e (z)| = |s||T
′′(fez)|

|T ′(fez)|2
|ge(z)| . |ξ||ge(z)|

where we use the inverse rule for differentiable functions and the chain rule.

Using integration by parts, we have for the Fourier transform ĝ that for all ξ ∈ R

the following estimate holds:

|ĥ(ξ)| ≤ 1

1 + |2πξ|4
(‖h‖L1 + ‖h′′′′‖L1).

Then in particular as Ξ < 1, we have∫
|ξ|>t0/2π

|ĥ(ξ)| · |ξ|2+Ξ dξ ≤
∫

ξ2+Ξ

1 + |2πξ|4
(‖h‖L1 + ‖h′′′′‖L1) dξ . ‖h‖L1 + ‖h′′′′‖L1 .

Step 5. We are left with the case |ξ| ≤ t0/2π, that is, an estimation for∫
|ξ|≤t0/2π

ĥ(ξ)
∑

d∈R̃m(ε)

|f ′ed(x)|δe−2πiξ log |f ′ed(x)| dξ

Let us bound

sup
|ξ|≤t0/2π

ĥ(ξ)
∑

d∈R̃m(ε)

|f ′ed(x)|δe−2πiξ log |f ′ed(x)| ≤ sup
|ξ|≤t0/2π

|ĥ(ξ)|
∑

d∈R̃m(ε)

|f ′ed(x)|δ

≤ Cε,2n−me
−λδ(2n−m)|J |
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since |ĥ(ξ)| ≤ ‖h‖L1 ≤ 3|J | and by the chain rule∑
d∈R̃m(ε)

|f ′ed(x)|δ =
∑

d∈R̃m(ε)

|f ′e(fd(x))|δ|f ′d(x)|δ

. Cε,2n−me
−λδ(2n−m)

∑
d∈R̃m(ε)

|f ′d(x)|δ

. Cε,2n−me
−λδ(2n−m).

by the properties of R̃m(ε).

Step 6. Combining Step 1, 2, 3, 4 and 5 gives us

]{d ∈ R̃m(ε) : e2λnf ′ed(x) ∈ B(y, e−ε0m)}2

.Ξ Cε,2n−me
−λδ(2n−m)Ee(x)[e−δ1(Ξ)m(‖h‖L1 + ‖h′′′′‖L1) + |J |],

where

Ee(x) :=
∑

d∈R̃m(ε)

1

|f ′ed(x)|δ
.

Finally, let us now analyse all the quantities we have. Lemma 2.2.3 gives that

Ee(x) . Cδ
ε,2me

2λδn]R̃m(ε)

so for some κ > 0

Cε,2n−me
−λδ(2n−m)Ee(x) . Cκ

ε,n]R̃m(ε)2

Moreover, recall that (5.2) gives

|J | ≤ 2Rr

and
1

|J |3
≤ 1

2
R3r−3

and when inputting r = e−ε0m and R = 162CC3λ
ε,m, we obtain

|J | . C3λ
ε,me

−ε0m

and
1

|J |3
. C9λ

ε,me
3ε0m

Then by the choice of h, we have

‖h‖L1 + ‖h′′′′‖L1 ≤ |J |+ 1

|J |3
. C3λ

ε,me
−ε0m + C9λ

ε,me
3ε0m.
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Thus we obtain

]{d ∈ R̃m(ε) : e2λnf ′ed(x) ∈ B(y, e−ε0m)}2

. Cκ
ε,n]R̃m(ε)2[e−δ1(Ξ)m(C3λ

ε,me
−ε0m + C9λ

ε,me
3ε0m) + C3λ

ε,me
−ε0m]

Here we see that the possible obstacle to the decay would come from the term

e−δ1(Ξ)me3ε0m = e−(δ1(Ξ)−3ε0)m.

But since we defined ε0 = δ1(Ξ)/4, we obtain c0 := δ1(Ξ) − 3ε0 > 0. This completes

the proof of the estimate (5.1) and thus the whole lemma.

5.4 Polynomial Fourier decay

We begin the proof by fixing first ε > 0 small enough that Cκ
ε,n = eκεn have the

exponent κε small enough in terms of λ, s, ε0 and c0. To be able to apply relevant

large deviation results, we need to make sure that the values of n that we consider are

sufficiently large. We begin by choosing n0(ε).

1. If n1 is the generation that arises from the main large deviation theorem, then

we require

n0(ε)ε0 > n1

to ensure we have valid regularity at each scale that we need.

2. If γ is the rate of expansion of (T n)′ with respect to n, and C is the Gibbs

constant for µ, we require

log 4

ε0n0

< ε2,
log 4C2

log(γ2ε0n0)
< ε/2 and

e−δε0n0

1− e−δ
< e−δε0n0/2

to ensure that we get decay on multiregular blocks of words.

Let s = dimH µ and λ the Lyapunov exponent of µ. Let k ∈ N and ε2 > 0 from Lemma

3.1.1.

Fix a frequency ξ ∈ R such that |ξ| is large enough. Let n ∈ N be the number such

that

e(2k+1)nλeε0n ≤ |ξ| ≤ e(2k+1)(n+1)λeε0(n+1).



5.4. POLYNOMIAL FOURIER DECAY 97

so up to a multiplicative constant depending on k and ε0, we have:

|ξ| ∼ e(2k+1)nλeε0n,

where |ξ| ∼ N means that there exists a constant c > 0 such that c−1N ≤ |ξ| ≤ cN .

Recall that

|Rn(ε)| . C3λ
ε,ne

−λδn

and if a ∈ Rn(ε), we have for all x ∈ X that

wa(x) ≤ C3λ
ε,ne

−λδn.

We begin by recalling the estimate from Proposition 3.3.1. Recall that there we have

Jn(ε) = {η ∈ R : eε0n/2 ≤ |η| ≤ Cε,ne
ε0n}.

Proposition 5.4.1. The assumption of Lemma 3.3.1 on µ× µ holds for τ = e−2ε0n.

Proof. By covering the n-regular part of the following set with bn/4c-generation parent

intervals, for fixed y ∈ X we have that

µ({x ∈ X : |x− y| ≤ C0e
−λn/4})

≤ µ(X \Rn) + µ({x ∈ Rn : |x− y| ≤ C0e
−λn/4})

≤ µ(X \Rn) +
⌈ 2C0e

−λn/4

C−1
ε,ne

−λbn/4c/16

⌉
e−λsbn/4c

≤ µ(X \Rn) + 64C0Cε,ne
−λs(n/4−1)

≤ µ(X \Rn) + 64eλC0Cε,ne
−λsn/4.

Hence we have that

µ× µ({(x, y) ∈ X2 : |x− y| ≤ C0e
−λn/4}) ≤ µ(X \Rn) + 64eλC0Cε,ne

−λsn/4

as required.

We have the following estimate in terms of exponential sums and error terms:

|µ̂(ξ)|2 .µ C
(2k+1)λ
ε,n e−λ(2k+1)δn

∑
A∈Rk+1

n (ε)

sup
η∈Jn(ε)

∣∣∣ ∑
B∈Rkn(ε)

e2πiηζ1,A(b1)...ζk,A(bk)
∣∣∣

+ e2kCk+2
ε,n e

−λneε0n + µ(X \Rk+1
n (ε))2

+ e−ε2n/2 + µ(I \Rn(ε)) + C2
ε,ne

−δε0n/2,
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where if blocks A ∈ Rk+1
n (ε),B ∈ Rk

n(ε), j ∈ {1, . . . , k} and b ∈ Rn, we defined

ζj,A(b) = e2λnf ′aj−1b
(xaj

).

Now, recall that in Proposition 3.2.2, we defined the non-concentrated blocks of

words A ∈ W as follows: for all j = 1, . . . , k, η ∈ Jn(ε) and σ ∈ [R2|η|−1, |η|−ε3 ],

where we have that

|{(b, c) ∈ Rn(ε)2 : |ζj,A(b)− ζj,A(c)| ≤ σ}| ≤ ]Rn(ε)2σc0/2.

Proposition 3.2.2 said most blocks are non-concentrated: there exists κ0 > 0,

e−λ(k+1)δn|Rk+1
n (ε) \W| ≤ C2κ0

ε,n σ
c0/4.

For the exponential sum term

C(2k+1)λ
ε,n e−λ(2k+1)δn

∑
A∈Rk+1

n (ε)

sup
η∈Jn(ε)

∣∣∣ ∑
B∈Rkn(ε)

e2πiηζ1,A(b1)...ζk,A(bk)
∣∣∣

in the estimate for |µ̂(ξ)| we begin by removing not non-concentrated blocks, which

gives that for some κ′0 > 0,

C(2k+1)λ
ε,n e−(2k+1)λδn

∑
a∈Rk+1

n \W

sup
η∈Jn(ε)

∣∣∣ ∑
B∈Rkn(ε)

e2πiηζ1,A(b1)...ζk,A(bk)
∣∣∣

≤ C(2k+1)λ
ε,n e−(2k+1)λδn

∑
A∈Rk+1

n \W

sup
η∈Jn(ε)

∑
B∈Rkn(ε)

1

≤ C(2k+1)λ
ε,n e−(2k+1)λδn

∑
A∈Rk+1

n \W

CkC3λk
ε,n e

kλδn

. CkC(5k+7)λ
ε,n e−(k+1)λδne(k+1)λδnσc0/4

. Cκ′0
ε,nσ

c0/4.

Hence we have that

|µ̂(ξ)|2 . Ckλ
ε,ne

−kλδn max
A∈W

sup
η∈Jn(ε)

∣∣∣ ∑
B∈Rkn(ε)

e2πiηζ1,A(b1)...ζk,A(bk)
∣∣∣

+ Cκ′0
ε,nσ

c0/4 + e2kCk+2
ε,n e

−λneε0n + µ(X \Rk+1
n (ε))2

+ e−ε2n/2 + µ(I \Rn(ε)) + C2
ε,ne

−δε0n/2.

Recall Remark 5.3.1, where we defined R := R(n, ε) := 162CC3λ
ε,n. Thus ζj,A(b) ∈

[R−1, R]. Moreover, if we fix η ∈ Jn(ε), A ∈ W and σ ∈ [R−2|η|−1, |η|−ε3 ], we have by

the definition of W that

]{(b, c) ∈ Rn(ε)2 : |ζj,A(b)− ζj,A(c)| ≤ σ} ≤ ]Rn(ε)2σc0/2
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Thus we may apply Lemma 3.1.2 to the maps ζj,A : Rn(ε)→ [R−1, R] with N = eλδn.

It implies that for all A ∈ W and η ∈ Jn(ε) that

Ckλ
ε,ne

−kλδn
∣∣∣ ∑
B∈Rkn(ε)

e2πiηζ1,a(B1)...ζk,a(bk)
∣∣∣ . R2kλ|η|−ε2 . C9kλ

ε,n e
−ε0ε2n/2

since |η| ≥ C−1
ε,ne

ε0n/2 by the definition of Jn(ε) as η ∈ Jn(ε). By making sure that

ε > 0 is chosen small enough and as ε0 ≤ λ/2 < λ, recall Remark 5.3.1(2) for the

choice of ε0 using the spectral gap of the transfer operator, which is independent of ξ,

we have proved that for some α > 0,

|µ̂(ξ)| = O(|ξ|−α)

as |ξ| → ∞. The proof of Theorem 5.2.3 is complete.

5.5 The case of not totally-nonlinear dynamics

As previously mentioned, the work of Mosquera–Shmerkin [42] presents an analogous

Fourier decay theorem for a large class of cases when the dynamics is not totally-

nonlinear. Using their results, we can prove Fourier decay for the case when log |T ′| is

cohomologous to a constant function. Note that this is not precisely the compliment

to totally-nonlinear dynamics, because that includes locally constant functions, not

just constant functions. This corresponds to studying measures invariant under self-

similar IFS’s and homogenous self-similar IFS’s (the details will be explained in this

subsection).

Let us consider the cohomologous to a constant case. So we assume that there

exist some diffeomorphism g : X → R and constant function c such that

log |T ′| = c− g ◦ T + g

for our dynamics T : X → X. We will require a function h : X → R such that

g = log h′, so define

h(x) :=

∫
y≤x

eg(y) dy

which is well-defined since g is Lipschitz. We also note that h′ is non-zero, and hence

h is a diffeomorphism by the inverse function theorem. We begin by identifying the

iterated function system which we will apply to Mosquera–Shmerkin [42].
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Lemma 5.5.1. Consider a diffeomorphism h : X → R. Then

log |T ′| = c− log h′ ◦ T + log h′

if and only if for all x ∈ X and a ∈ A

(hfah
−1)′(x) = e−c

where fa : X → Ia represents an inverse branch for the dynamics T .

Proof. Let y = h−1(x). We have that for all a ∈ A and all x ∈ X

(hfah
−1)′(x) = e−c ⇐⇒ h′(fah

−1x) · f ′a(h−1x) · (h−1)′(x) = e−c

⇐⇒ log h′(fay)− log |T ′(fay)| − log h′(y) = −c

⇐⇒ log |T ′(x)| = c+ log h′ ◦ T (x)− log h′(x)

as required.

So we have that

{hfah−1 : a ∈ A}

is a homogenous self-similar IFS with contraction ratio e−c. We now relate a Bernoulli

measure µ under the dynamics T to a Bernoulli measure for the given IFS. Assume

that

µ =
∑
a∈A

pafaµ

for some Bernoulli weights pa ≥ 0.

Lemma 5.5.2. We have that if µ = (h−1ν) is Bernoulli under T then ν is Bernoulli

for the IFS {hfah−1 : a ∈ A}.

Proof. For a test function ϕ we have that∫
ϕdν =

∫
ϕ ◦ h(x) dµ(x)

=
∑
a∈A

pa

∫
ϕfah(x) dµ

=
∑
a∈A

pa

∫
ϕh−1fah(x) dhµ

=

∫
ϕ(x) d

(∑
a∈A

pa(h
−1fah)ν

)
so µ and ν have the same Bernoulli weights.
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We can conclude that Mosquera–Shmerkin is directly applicable to this situation

with the following theorem.

Theorem 5.5.3. Let µ be a Bernoulli measure for a map T : X → X. Assume

that there exists a diffeomorphism g ∈ C2(R,R) such that for some constant function

c : X → R

log |T ′| = c+ g − g ◦ T.

Then µ has polynomial Fourier decay.



Chapter 6

Convex Cocompact Fuchsian

groups

Once we proved the non-concentrated derivatives assumption for Gibbs measures of the

Gauss map, the next question was whether we could extend this to more maps. This

is quite a difficult problem, and we were not even sure that we had the tools to solve it

before our introduction to complex transfer operator theory. The diophantine tools of

Queffélec and Ramaré were required for the Gauss map proof, and the Schottky tree

structure for the Fuchsian group setting. At this point, we knew it would be interesting

to try and further understand why these cases work. Of course the Fuchsian group

setting is well understood thanks to the work of Bourgain–Dyatlov [8]. In this setting,

they could use the fact that distortions of the form γ′′a(x)/γ′a(x) are comparable to

the geometric point γ−1
a (∞). The measure and Schottky structure can then be used

to analyse these points. This work then lead to the Gauss map setting, where we

could similarly say that the differences of the distortions f ′′a (x)/f ′a(x) − f ′′b(x)/f ′b(x)

are comparable to the difference of geometric points pn(a←)/qn(a←)−pn(b←)/qn(b←).

We can then similarly use the measure to analyse these differences using the ideas of

Queffélec and Ramaré presented in Jordan–Sahlsten [50][26]. To help understand why

these cases work, we decided to look deeper into the Fuchsian group setting. A natural

question to ask is whether we can extend the proof of Bourgain–Dyatlov to a wider

class of measures. The aim here would be to prove a result for statistical (Gibbs)

measures similarly to the Gauss map setting. This means identifying the necessary

properties of Patterson–Sullivan measures to get a result. Bourgain–Dyatlov used

102
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the fact that the Patterson–Sullivan measures are ‘Ahlfors–David’ regular, and that

they ‘preserve inversion’ which shall be explored in this chapter. Note that Bourgain–

Dyatlov [8] refer to ‘inverting’ as ‘reversing’, but to avoid confusion with the Gauss

map case where we do actually reverse words (referring to the use of a←), we avoid

using the word ‘reverse’ here.

6.1 Schottky Structure

We consider the case when we have a Fuchsian group which is convex and cocompact,

i.e. a Fuchsian group giving a hyperbolic surface H/Γ which is geometrically finite

(has a fundamental domain which is a finite-sided convex polygon) and does not have

any cusps. In this case the surface has infinite area. In this set up, we have a great

way to think about the set of transformations Γ.

We begin by considering disjoint closed half disks D1, . . . , D2r ⊂ H̄ := H∪∂H that

intersect the real line at right angles. Define an alphabet A = {1, 2, . . . , 2r}. For j ∈

{1, . . . , r}, γj will be defined to be the the transformation which sends H\Dj+r into Dj,

and hence for bijectivity, γj sends Dj+r to H\Dj. The action of this transformation can

be extended to the boundary ∂H in the usual way [67]. We will define j̄ := j+r mod 2r

for any j ∈ A, and we let γj̄ := γ−1
j . We will define the first generation construction

intervals Ia := Da ∩ ∂H for a ∈ A.

Definition 6.1.1. We say that a Fuchsian group Γ has a Schottky structure if there

exists such a set of half disks {Dj : j ∈ A} such that the corresponding set of trans-

formations {γj : j ∈ A} generate Γ.

It is worth noting that the set H\∪j∈ADj is a natural fundamental domain for the

surface H/Γ, and the disjointness of the half disks means that the surface has infinite

surface area. This also means that the Fuchsian group is convex and cocompact. The

following theorem is given in Borthwick’s book [4].

Theorem 6.1.2. Suppose the H/Γ is a geometrically finite, infinite area hyperbolic

surface without cusps. Then the surface is homeomorphic to another hyperbolic surface

whose corresponding Fuchsian group has a Schottky structure.

We will consider such surfaces from now on. So the Schottky structure without

inverses, namely the set {γ1, . . . , γr} will generate the Fuchsian group, so to consider
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D1

D2 D3

D4

I11

I14

I12

I33

I32

I34I21
I23

I22

I44

I41

I43

Figure 6.1: A Schottky structure for r = 2 when considered in the Poincaré
disk model.



6.1. SCHOTTKY STRUCTURE 105

admissible words in the alphabet A, we only need require a letter j to not be followed

by its inverse j̄. We will define words of length n as

An := {a1 . . . an ∈ An : aj 6= aj+1 ∀j = 1, . . . , n− 1}

and letW := ∪nAn be the set of all finite length words. Given a word a := a1 . . . an ∈

An, we will define its inverse to be ā := ān . . . ā1 ∈ An. This is defined as such since

γaγā = γāγa will be the identity transformation, where we will define γa := γa1◦. . .◦γan .

We will define a′ := a1 . . . an−1 ∈ An−1 to be a with the last letter deleted. Given

another word b := b1 . . . bm ∈ Am, we will denote a → b to mean that ān 6= b1, i.e.

that ab is an admissible word. We will denote a ≺ b to mean that there exists a word

c ∈ W such that b = ac i.e. that a precedes the word b. We will iteratively define

the construction intervals Ia := γa′(Ian). The support of the measures that we will

consider is the limit set

Λ :=
⋂
n∈N

⊔
a∈W

Ia

and we call a finite set of words Z ⊂ W a partition if the corresponding construction

intervals are mutually disjoint and cover the limit set.

Given a transformation γ ∈ SL(2,R) with γ(I) = J for I, J ⊂ ∂H, we define the

distortion of γ on I := [x0, x1] to be

α(γ, I) := log
γ−1(∞)− x1

γ−1(∞)− x0

∈ R.

If γ−1(∞) = ∞, γ is a translation, so we will say that intervals are not distorted

under γ and define α(γ, I) = 0 for all intervals I. Define γI , γJ ∈ SL(2,R) to be the

transformations which map the unit interval to I and J respectfully. We then get that

if we define γα ∈ SL(2,R) such that

γα(x) :=
eα/2x

(eα/2 − e−α/2)x+ e−α/2
,

then we have that γ = γJγα(γ,I)γ
−1
I , [8]. We will use the following lemma to bound

distortion [8, Lemma 2.4].

Lemma 6.1.3. Let a ∈ W and b ∈ A such that a→ b. Then the distortion of γa on

Ib is bounded, i.e. |α(γa, Ib)| ≤ CΓ for some constant CΓ > 0 depending only on the

Schottky structure.
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The following lemma slightly adapts Lemma 2.5 of Bourgain–Dyatlov [8] by re-

defining a as ab where a→ b and using the parent-child ratio (Lemma 2.6 [8]).

Lemma 6.1.4. For a ∈ An and all b ∈ A such that a→ b, we have that

C−1
Γ |Ia| ≤ γ′a(x) ≤ CΓ|Ia|

and for all x, y ∈ Ib,
γ′a(x)

γ′a(y)
≤ exp(CΓ|x− y|).

The following lemma adapts some lemmas of Bourgain–Dyatlov in a similar manner

[8, Lemmas 2.6, 2.7, and 2.8].

Lemma 6.1.5. For a ∈ W, b ∈ A such that a → b, and b ∈ W such that a → b we

have that

C−1
Γ |Ia| ≤ |Iab| ≤ |Ia| (6.1)

C−1
Γ |Ia| · |Ib| ≤ |Iab| ≤ CΓ|Ia| · |Ib| (6.2)

C−1
Γ |Ia| ≤ |Iā| ≤ CΓ|Ia| (6.3)

We call these properties of construction intervals the Parent-Child ratio, the concate-

nation property, and the inversion property respectfully.

6.2 Large Deviations for the Bowen–Series Map

The Schottky structure gives us a nice way to code the limit set ΛΓ symbolically. If

we define first generation construction intervals Ij := Dj ∩ ∂H, let

X := ∪j∈AIj

then we define the Bowen–Series map T : X → R by

T (x) := γ−1
j x for x ∈ Ij

This is a self-map on the limit set. So you can think of T removing the first symbol

of some coded point. To be able to apply large deviation theory, we need T to be

(eventually) expanding. The following proposition is used from Borthwick’s book [4].
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Proposition 6.2.1. There exists a finite set of intervals {Ji} which cover the limit

set, such that for some n ∈ N, there exists a β > 1 such that for all x ∈ ∪Ji,

|(T n)′x| > β.

So the map T is eventually expanding, which will be sufficient for large deviations.

We require large deviations to be able to do various analysis, most notably reducing

the Fourier transform to exponential sums. The large deviation theorem of Jordan–

Sahlsten can be used almost directly. The only big difference we must consider is

that the Bowen–Series map is eventually expanding rather than expanding, and the

dynamics will be considered in a limit set which is a subset of some large interval, rather

than the limit set (badly approximables) as a subset of the unit interval. On the other

hand, the measure on the limit set of a Fuchsian group case is made easier because

− log |T ′| is a bounded potential (not on X, but it is bounded on the construction

intervals for words of length bigger than one) as opposed to the Gauss map analogue,

and we also only have a finite alphabet. We will be able to prove that T is locally

Hölder by using the fact that the construction intervals are contracting [8, (2.4)].

Proposition 6.2.2. The potential − log |T ′| is locally Hölder, that is there exists a

C > 0 and a δ < 1 such that for any n ≥ 2 and any word a ∈ An we have that for

any x, y ∈ Ia,

| − log |T ′(x)|+ log |T ′(y)|| ≤ Cδn.

Proof. For z ∈ Ia we have that T (z) := γ−1
a1

(z). We note that γa1(∞) /∈ Ia because

this otherwise would mean that ∞ ∈ Ia2 , so T ′ and T ′′ are indeed bounded (from

above and below). We use the mean value theorem to see that for some ξ ∈ Ia and

some constant CΓ > 1 depending only on the Schottky structure for Γ,

| log |T ′(x)| − log |T ′(y)|| = |T
′′(ξ)|
|T ′(ξ)|

|x− y| < CΓ|x− y|.

We know that |x − y| ≤ |Ia|, so we can conclude using the contractive property

of the Schottky structure proved in Bourgain–Dyatlov [8, (2.5) page 6], where δ :=

(1− C−1
Γ ).

Recall the main large deviation theorem given earlier (Theorem 1.2.3) of Jordan–

Sahlsten [26]. This theorem is proven in the context of Gibbs measures for the Gauss



108 CHAPTER 6. CONVEX COCOMPACT FUCHSIAN GROUPS

map, but can be generalised to any Gibbs measure for some Markov map. The change

of domain does not need to be considered in the proof, only the change in symbolic

coding. In fact, in the Fuchsian group setting, the finite alphabet will make some

technical steps of their proof unnecessary. The assumption on finite pressure is straight

forward to prove for the bounded potential and finite alphabet case, because this means

that the pressure is always finite for any t. As a result, we can succinctly obtain the

large deviation theorem in this setting. This allows us to use large deviation theory in

the same way that we have done in the Gauss map and totally-nonlinear map cases.

6.3 Measure Inverting

To continue with the proof of showing that the Bowen–Series map has non-concentrated

derivative, we require a strong condition on the measure.

Definition 6.3.1. We will say that a measure µ is preserved under inversion (or that

that µ preserves inverting) if there exists some CI > 0 such that for any a ∈ W,

C−1
I µ(Ia) ≤ µ(Iā) ≤ CIµ(Ia).

Such a condition is used because we will meet the situation where we want to

study words a ∈ W whose inverse is regular i.e. ā ∈ Rn(ε). This condition holds for

Patterson–Sullivan measures by Lemma 6.1.5 (6.3). We can also find more measures

with inverting by looking at Markov measures. Consider a (2r) × (2r) non-negative

aperiodic (P n is positive for some n) row-Stochastic (for any row, the sum over entries

in that row is one) transition matrix P = (pi,j). We consider the following special case

of the Perron–Frobenius theorem for the case of row-Stochastic matrices [68, Theorem

8.3].

Theorem 6.3.2 (Perron–Frobenius). Let P be a non-negative aperiodic row-Stochastic

transition matrix. Then we have that

(1) The column vector of one’s is the unique right eigenvector for P ;

(2) There exists a unique left eigenvector π = (π1, . . . , πn) such that πP = π and π is

normalised (the sum of its entries is one).

We will consider matrices P that are compatible with the Bowen–Series map, that

is pi,̄i = 0 for each i ∈ A. Note that ī = i + r mod 2r by definition of the Schottky
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structure. This means we only assign mass to admissible words (where a symbol

a ∈ A is never followed by its inverse ā). For a ∈ Wn, we can then define a measure

on construction intervals by

µ(Ia) = πa1pa1,a2pa2,a3 . . . pan−1,an .

Now we ask how we can force that such a measure preserves inverting. It will be suffi-

cient (although maybe not necessary) to assume that pi,j = pj̄ ,̄i for (i, j) ∈ A2, noting

that i and j are swapped. Hence we will have measure inverting with CI = maxj π
−1
j .

We also have that this is a Gibbs measure with potential ϕ(x) = log pa1(x),a1(Tx) and

Gibbs constant CI . The measure inverting condition will be equivalent to saying that

there exists r × r matrices A and B such that

P =

 A B

BT AT


because the condition is the same as requiring that pi,j = pj+r mod 2r,i+r mod 2r (when

considering entries in the matrix, you can think of it as taking a transpose, then a

vertical and horizontal translation by r). We still require that P is stochastic. We can

force this by restricting to the case when A and B are symmetric. Then the sum of

row j will equal the sum of row j + r mod 2r, so we only need check the first r rows.

To make sure P is compatible with the Bowen–Series map, we make sure that the

diagonal entries of B are zero. We can also restrict to make sure all other entries of

P are positive so that P is aperiodic (with n = 2). The main consequence of all these

restrictions is that P is symmetric, so the unique left eigenvector of P is the column

vector of ones (by Perron–Frobenius), so we must have that µ(Ia) = πa = 1/2r for all

a ∈ A. For specific examples, consider the case when r = 2. Then if we apply the

aforementioned restrictions, we have that

P =


b c 0 a

c b′ a 0

0 a b c

a 0 c b′


where a, b, c, b′ > 0. Note we must have that b = b′ in this situation for the sum over

rows to be equal to one. So by choosing some a, b, c > 0, we know there are Markov

measures which preserve inverting in the case of r = 2. This method can be followed

to construct measures for larger r.
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6.4 Non-Concentrated Derivative

There are two counting lemmas that we will need. The first is summing over regular

words such that their construction interval intersects an interval J . We can deal with

this as in the proof of Lemma 3.2.3.

The second counting lemma is where we may need a measure inverting assumption.

We require to count words a (not necessarily regular) whose inverse is regular, and

the inverse construction interval intersects some interval J . We can proceed with the

proof in the same way as the first counting lemma, but the idea is that we can say that

the word a has the properties of a regular word by using the quasi-Bernoulli property

and measure inverting to use the properties of the regular word ā. The proof then

follows as in the first lemma, but it actually works slightly better. The first lemma

annoyingly requires us to consider regularity all the way to some ε2n level (for some

ε2 > 0 small), so we have to make sure that εr is small enough so that this works.

Lemma 6.4.1. Consider an interval J with 2C−1
ε,ne

−λn/4 ≤ |J | ≤ 2C−1
ε,ne

−εrλn. Define

D2(a,b, c)′ := #{d ∈ Rn : Id ∩ J 6= ∅}.

We have that for some C > 0,

#D2(a,b, c)′ ≤ Ceλsn|J |s/2.

Remark 6.4.2 (Idea of the proof). The idea of the proof of Lemma 6.4.1 is quite

basic. We have an interval J , and we want to count the n-regular intervals Id inside

it. We choose j such that |J | ≈ e−λj so that we can instead count the intervals Id|j

which are approximately the same length as J by regularity of d ∈ Rn at the j-th level

(see Figure 6.2). This will give us a small (only growing with order Cε,n) collection

of j-parent intervals Id|j which contain the intervals Id that we want to count. We

can then count the number of n-regular words d in each j-parent interval d|j using the

regularity of d again to get the result.

Proof. To begin, choose j such that

1

48
e−λe−λj−

3
2
εn ≤ |J | ≤ 1

48
e−λj−

3
2
εn

noting that there is at least one such choice for j in {bεrnc, . . . , n}.
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Figure 6.2: The interval J , it’s regular j-parent covering, and the n-regular
intervals we want to count.

It is important to note that there might exist at most two intervals Id which are not

contained in J , but do intersect J . If we were to cover J with j-parents of n-regular

intervals whose length are at least e(−λ−ε)j/4, then in the ‘worst case’ (when J does

not contain any irregular geometric points), then the number K of j-parent covering

sets would satisfy the last inequality in the following

|J | ≤ e−λj−3εn/2 ≤ e−λj ≤ K

4
e−λj−εj.

So we can sufficiently choose a K ≥ 4eελn ≥ 4eεj, for example K = d4eελne ≤ 8Cλ
ε,n

where the inequality is true since eελn ≥ 1.

Given a j-parent Id|j in the cover, we now approximate the number of n-regular

intervals Id (corresponding to the number of regular words which we wanted originally)

contained in this set. We see that by Lemma 2.2.3

#{d ∈ Rn : dj ≺ d}C−1e−λsnC−3λ
ε,n ≤ µ

( ⋃
d∈Rn:dj≺d

Id

)
≤ µ(Idj) ≤ Ce(−sλ+3λε)j

so we get that

#{d ∈ Rn : dj ≺ d} ≤ C3λ
ε,nC

2eλsne(−sλ+3λε)j.

So to conclude, we get that

#D2(a,b, c)′ ≤ KC3λ
ε,nC

2eλsne(−sλ+3λε)j ≤ 48C2eλC8λ
ε,ne

λsn|J |s ≤ 48eλC2eλsn|J |s/2

(using the fact that s ≤ 1, j ≤ n, and ε is much smaller than εr) which is as we

require.
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The following lemma will allow is to count inverted regular words.

Lemma 6.4.3. Consider an interval J with 2e−λn/4 ≤ |J | ≤ 2e−εrn. We have that

#{c ∈ An : c̄ ∈ Rn, Ic ∩ J 6= ∅} ≤ eλsn|J |s/2

noting that we get exponent s/2 unlike Bourgain–Dyatlov [8] to get rid of constants

and order Cε,n growing terms.

Remark 6.4.4 (Idea of the proof). We use the same idea as the proof of Lemma

6.4.1. The only problem here is that the words c which we count are not necessarily

regular. We force regularity properties by assuming that the measure is invertible (see

Definition 6.3.1). Also note that this proof only requires regularity up to n/2 as used

by Jordan–Sahlsten [26].

Proof. To begin, choose j such that

1

48
e−λe−λj−

3
2
εn ≤ |J | ≤ 1

48
e−λj−

3
2
εn

noting that there is at least one such choice for j in {0, . . . , dn/2e} since εr < 1/2.

It is important to note that there might exist at most two intervals Ic which are

not contained in J , but do intersect J .

We first need some facts about the j-parents of words c which we are counting. By

concatenation (6.2), we have that

|Ic|j | ≥ C−1
C

|Ic|
|Iσjc|

.

By (6.3) we get that since c̄ is regular

|Ic| ≥ C−1
I |Ic̄| ≥

C−1
I

16
C−1
ε,ne

−λn.

Then using the fact that σjc is the inverse of the word c̄|n−j, we get by (6.3)

|Iσjc| ≤ CI |Ic̄|n−j | ≤ CICε,ne
−λ(n−j).

Hence we can say that

|Ic|j | ≥
1

16
C−1
C C−2

I C−2
ε,ne

−λj

If we were to cover J with intervals of j-parents for words c, then in the ‘worst

case’, the number K of j-parent covering sets would satisfy the last inequality in the

following

|J | ≤ e−λj−3εn/2 ≤ e−λj ≤ K

16
C−1
C C−2

I C−2
ε,ne

−λj.
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So we can sufficiently choose aK ≥ 32e2ελn, for exampleK = d32e2ελne ≤ 32C2λ
ε,n where

the inequality is true if we assume that n is large enough so that eελn/3 ≥ max{CC , CI}.

We now use a similar argument but for measure rather than length. We proceed

with the proof by first noting that

CCIC
3λ
ε,ne

−sλn ≥ CIµ(Ic̄) ≥ µ(Ic) ≥ C−1
I µ(Ic̄) ≥ C−1C−1

I C−3λ
ε,n e

−sλn

by regularity of c inverse. Also, by the Bernoulli property,

C−1
B µ(Ic|j)µ(Iσjc) ≤ µ(Ic).

As before, we use the fact that the inverse of the word c̄|n−j is the same as σjc, hence

we get that

µ(Iσjc) ≥ C−1
I µ(Ic̄|n−j) ≥ C−1

I C−1C−3λ
ε,(n−j)e

−sλ(n−j)

by multiregularity of c inverse. So we can say that

µ(Ic|j) ≤ CBC
2
IC

2C6λ
ε,ne

−sλj.

Given a j-parent Icj in the cover, we now approximate the number of n-regular intervals

Ic (corresponding to the number of inverted regular words which we wanted originally)

contained in this set. We see that by Lemma 2.2.3

#{c : c̄ ∈ Rn, cj ≺ c}C−1e−λsnC−3λ
ε,n ≤ µ

( ⋃
c:cj≺c

Ic

)
≤ µ(Icj) ≤ CBC

2
IC

2C6λ
ε,ne

−sλj

so we get that

#{c : c̄ ∈ Rn, cj ≺ c} ≤ CBC
2
IC

3C9λ
ε,ne

sλ(n−j)

So to conclude, we get that

#D2(a,b, c)′ ≤ (K + 2)CBC
2
IC

3C9λ
ε,ne

sλ(n−j) ≤ eλsn|J |s/2

(where we use the fact that n is sufficiently large, and ε is small with respect to s)

which is as we require.

We will use the following application of the mean value theorem to obtain the

interval J [8].
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Lemma 6.4.5. Consider an interval L and suppose that γ1 and γ2 are two Möbius

transformations such that γj(I) = Jj for intervals I, Jj for j = 1, 2. Then we have

that the set of points x ∈ I such that

log
γ′1(x)

γ′2(x)
∈ L

is contained in some interval of length smaller than

C · |I| · |L|
|α(γ1, I)− α(γ2, I)|

for some constant C > 0.

Proof. The proof is given in Bourgain–Dyatlov, Lemma 2.3 [8]. The only difference is

that we use Lemma 6.1.3 to get the constant C > 0.

Finally, we can prove the non-concentration assumption as required to show Fourier

decay.

Lemma 6.4.6. Consider a ∈ Rn(ε). For each σ with e−λn ≤ σ ≤ C−1
ε,ne

−εrλn we have

that

#{(b, c,d) ∈ Rn(ε)3 : a→ b→ d, a→ c→ d, |γ′ab(xd)− γ′ac(xd)| ≤ e−2λnσ}

can be bounded from above by e3λsnσs/4.

We follow the proof of Bourgain–Dyatlov [8, Lemma 2.16]. The main difference

once again is Cε,n error terms, which in the end will just result in a slightly weaker

exponent of σ for the upper bound (namely s/4 rather than Bourgain–Dyatlov who

get s/2). The relationship between distortion factors and the preimage of infinity is

explained in detail.

Proof. Consider fixed b ∈ Rn. We first consider counting the set

B := {c ∈ Rn : a→ c, |γ−1
ab (∞)− γ−1

ac (∞)| ≤
√
σ}.

By definition of the Schottky structure we have that γ−1
ac (∞) = γc̄ā(∞) ∈ Ic̄. Therefore

B is contained in the set

{e ∈ Wn : ē ∈ Rn(ε), Ie ∩ J 6= ∅}
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where J := γ−1
ab (∞) + [−

√
σ,
√
σ]. Hence we can apply Lemma 6.4.3 to bound this

set. We can then bound the set of triples in B by using the cardinality bounds given

in Lemma 2.2.3.

We complete the proof by considering when a triple satisfies |γ−1
ab (∞)− γ−1

ac (∞)| ≥
√
σ. We can count such triples by considering the set

D := {d ∈ Rn(ε) : b→ d, c→ d, |γ′ab(xd)− γ′ac(xd)| ≤ e−2λnσ}

for fixed a,b and c. By Lemma 2.2.3 we have that 1
162
C−2
ε,ne

−2λn ≤ γ′ab, γ
′
ac ≤ C2

ε,ne
−2λn

on the set Id1 which is valid by the conditions on the words. Hence by the mean value

theorem applied to the logarithm we have that the set

D′ :=
{

d ∈ Rn(ε) : b→ d, c→ d,
∣∣∣ log

γ′ab(xd)

γ′ac(xd)

∣∣∣ ≤ C3
ε,nσ

}
contains D, which crudely uses Cε,n > 162.

Let Id1 =: [x0, x1]. We have that

|α(γab, Id1)− α(γac, Id1)| =
∣∣∣ log

γ−1
ab (∞)− x1

γ−1
ab (∞)− x0

− log
γ−1
ac (∞)− x1

γ−1
ac (∞)− x0

∣∣∣
=

1

|M |

∣∣∣γ−1
ab (∞)− x1

γ−1
ab (∞)− x0

− γ−1
ac (∞)− x1

γ−1
ac (∞)− x0

∣∣∣
where the last equality holds using the mean value theorem with

M ∈

[
γ−1
ab (∞)− x1

γ−1
ab (∞)− x0

,
γ−1
ac (∞)− x1

γ−1
ac (∞)− x0

]
.

So |M | can be bounded from above using a constant depending only on the Schottky

data because γ−1
ac (∞) ∈ Ic̄n and γ−1

ab (∞) ∈ Ib̄n . So using the fact that Id1 = [x0, x1] we

have that for some constant CΓ > 0 depending on the Schottky data,

|α(γab, Id1)− α(γac, Id1)| =
1

|M |

∣∣∣ γ−1
ab (∞)|Id1 | − γ−1

ac (∞)|Id1|
(γ−1

ab (∞)− x0)(γ−1
ac (∞)− x0)

∣∣∣
≥ 1

CΓ

|γ−1
ab (∞)− γ−1

ac (∞)|.

Hence by Lemma 6.4.5 we know that there is an interval J ′ of length C3
ε,n

√
σ such that

the points xd ∈ D′ intersect J ′. By using Lemma 6.4.1, we get the required bound.

So we have proven the non-concentration condition when we have ‘invertible’ mea-

sures. We hence get polynomial Fourier decay for these measures by using the same

proof strategy as in the Gauss map case, where we also use the frequency parameter

τ = e−λn. See Subsection 4.3.1 for details.
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6.5 Fractal Uncertainty Principle

Using Theorem 5.2.3, we can prove polynomial Fourier decay for Gibbs measures on

limit sets of convex cocompact Fuchsian groups by the following theorem of Naud.

Lemma 6.5.1 (Naud, 2005 [44]). For a convex cocompact Fuchsian group Γ, the

function log |T ′| is totally nonlinear on the limit set.

We hence get a generalisation of Bourgain–Dyatlov [8] for Gibbs measures of large

dimension, but we only get polynomial Fourier decay for very large frequencies. The

following theorem proves a fractal uncertainty principle when we only get polynomial

decay of the Fourier transform for exponentially large frequencies, unlike Bourgain–

Dyatlov when their decay theorem works for frequencies with size bigger than one.

Proposition 6.5.2. For Φ ∈ C3([0, 1]2,R) and G ∈ C1([0, 1],C), assume that

||Φ||C3 + ||G||C1 ≤ CΦ,G and inf |∂2
xyΦ| ≥ C−1

Φ,G.

We will assume further that there exists some b > 0 and exponentially decreasing

τ(n) > 0 such that for all sufficiently large n we have that

µ× µ({(x, y) ∈ X2 : |x− y| ≤ Cε,nτ(n)1/4}) ≤ τ(n)b

which is the same as the assumption in the main Exponential Sum Lemma 3.3.1. Then

there exists some n′0 > 1 such that for h ∈ (0, e−n
′
0), if we define B(h) : L2([0, 1], µ)→

L2([0, 1], µ) by

B(h)u(x) =

∫
eiΦ(x,y)/hG(x, y)u(y) dµ(y).

Then there exists some εF > 0 and some C = C(T,Φ, G) > 0 such that

||B(h)||L2([0,1],µ) ≤ ChεF .

The following proof modifies the proof given by Bourgain–Dyatlov so that it works

in the setting of Large Deviations and eventual (for large frequencies) polynomial

Fourier decay. The following is a proof that is more relevant for the Gauss map case,

but can easily be modified to the Bowen–Series setting. The main difference is that

X is not a single interval in the Fuchsian case, so a partition of unity is necessary as

presented in the proof of Bourgain–Dyatlov [8, Proposition 4.1]. This is also true for

the totally-nonlinear maps setting, and by extension to Gibbs measures on the limit

set with large enough dimension.
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Proof. For the given measure µ, we get Fourier decay for |ξ| > e(2k+3/2)n0 for some n0

defined when studying large deviations of the relevant dynamics. Consider some small

h > 0. We will have to choose n large enough so that

τ(n)−1/4 > τ(n0)−1/2e(2k+1)λn0

which will mean that we can use the (eventual) Fourier decay. Choose n ≥ n0 such

that

τ(n+ 1)1/2 ≤ h ≤ τ(n)1/2 < 1.

It suffices to prove that

||B(h)B(h)∗||L2([0,1],µ) ≤ Chεs/2

where B(h)B(h)∗ can be shown to be given by

B(h)B(h)∗f(x) =

∫
K(x, x′)f(x′) dµ(x′)

where

K(x, x′) =

∫
ei(Φ(x,y)−Φ(x′,y))/hG(x, y)G(x′, y) dµ(y).

By Schur’s test, to prove the required bound we can sufficiently prove that

sup
x∈[0,1]

∫
|K(x, x′)| dµ(x′) ≤ Chεs/2.

For x, x′ ∈ [0, 1], define ϕxx′ and gxx′ such that

Φ(x, y)− Φ(x′, y) = (x− x′)ϕxx′(y) and gxx′(y) = G(x, y)G(x′, y).

Then we have that

K(x, x′) =

∫
eiξϕxx′ (y)gxx′(y) dµ(y)

where ξ := (x− x′)/h. By the assumptions on G and Φ we get that for some C > 0

||ϕxx′||C2 + ||gxx′||C1 ≤ C and inf
[0,1]
|∂yϕxx′ | ≥ C−1.

By the main decay theorem, we get that

|K(x, x′)| ≤ C
∣∣∣x− x′

h

∣∣∣εs
when considering the integral over {(x, x′) : |x − x′| > h1/2}. This will contribute a

bound of Chεs/2.
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For the integral over {(x, x′) : |x − x′| ≤ h1/2}, which is contained in {(x, x′) :

|x − x′| < Cε,nτ(n)1/4}, we can use the µ × µ assumption to bound this part of the

integral by some constant times τ(n+1)b/2. Since τ(n) > 0 is exponentially decreasing,

there exists some C > 1 such that τ(n) ≤ Cτ(n + 1) so we can say that this part of

the integral is bounded by hb/2 for sufficiently small h, concluding the proof.



Chapter 7

Prospects

We find ourselves in a situation where many questions about the interplay between

nonlinear dynamics and Fourier transforms have been answered in recent years, but

there are still so many questions yet to be answered.

In all this work we assume that the dimension of the measure is at least non-zero.

In the zero case, we have less tools at our disposal. In the infinite Lyapunov exponent

case, we lose the control from large deviations, which in turn likely means using the

sum-product theory of Bourgain will not be possible. This is also the case for the

infinite entropy setting. Vastly different techniques will need to be employed for these

cases.

Asking about higher dimensional analogues is a natural question, and one that

many people are interested in. The main thing to note is that the paper of Stoyanov

[63] works in higher dimensions. However, the difficulty is likely to be in the application

of Stoyanov’s work to prove non-concentration of derivatives. Li–Naud–Pan [36] proved

a higher dimensional version of Bourgain–Dyatlov which took a great deal of work,

and took full advantage of the strength of the Schottky structure of Fuchsian groups.

It might be that without such a structure where the non-concentrated behaviour of

derivatives is strong, it might not be possible to prove results. However, we said

the same thing about extending the Gauss map decay theorems to general nonlinear

maps, and that turned out to be possible. I have no doubt that if a higher dimensional

analogue is possible, it will take the commitment of the best mathematicians in this

field to produce a proof.

Large deviation theory has proven to be a very useful tool for solving problems in
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dynamical systems. It is central in being able to reduce to the sum-product theory of

Bourgain in Chapter 3.1. In the Markov map setting, we are interested in proving more

large deviation theorems so that we can directly obtain results on Fourier transforms

of measures using the proofs of [54]. Results such as Pollicott–Sharp [49] prove that

the Manneville–Pomeau map has large deviation theorems that exhibit polynomial

decay in the worst case. If such theorems could be proved for totally nonlinear maps,

the results in Chapter 3.1 can be used to give logarithmic Fourier decay.

So we have Fourier decay results for the case of Markov map invariance when

considering Mosquera–Shmerkin [42] and Theorem 1.3.4 together. We also have a

variety of theorems in the linear setting, such as those presented by Li–Sahlsten [38]

[37]. In their setting, the best decay rate they can achieve is logarithmic, but in the

nonlinear setting we can get polynomial decay. An important consideration is how the

polynomial decay rate of nonlinear systems behaves when you make them more linear.

In Solomyak’s [60] work, he shows that every self-similar measure has polynomial

Fourier decay outside a set of measures with dimension zero. This suggests that the

decay results obtained by Li–Sahlsten are not the best possible in most cases. One

question is whether proving polynomial Fourier decay for specific self-similar measures

(linear dynamics) would be possible, or whether the random component of the measure

is necessary to use tools like in Mosquera–Shmerkin. This is a question which a lot of

people are actively researching (see Subsection 1.1.7).
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