3,496 research outputs found

    Computing harmonic maps between Riemannian manifolds

    Get PDF
    In [GLM18], we showed that the theory of harmonic maps between Riemannian manifolds may be discretized by introducing triangulations with vertex and edge weights on the domain manifold. In the present paper, we study convergence of the discrete theory to the smooth theory when taking finer and finer triangulations. We present suitable conditions on the weighted triangulations that ensure convergence of discrete harmonic maps to smooth harmonic maps. Our computer software Harmony implements these methods to computes equivariant harmonic maps in the hyperbolic plane

    A discrete Laplace-Beltrami operator for simplicial surfaces

    Get PDF
    We define a discrete Laplace-Beltrami operator for simplicial surfaces. It depends only on the intrinsic geometry of the surface and its edge weights are positive. Our Laplace operator is similar to the well known finite-elements Laplacian (the so called ``cotan formula'') except that it is based on the intrinsic Delaunay triangulation of the simplicial surface. This leads to new definitions of discrete harmonic functions, discrete mean curvature, and discrete minimal surfaces. The definition of the discrete Laplace-Beltrami operator depends on the existence and uniqueness of Delaunay tessellations in piecewise flat surfaces. While the existence is known, we prove the uniqueness. Using Rippa's Theorem we show that, as claimed, Musin's harmonic index provides an optimality criterion for Delaunay triangulations, and this can be used to prove that the edge flipping algorithm terminates also in the setting of piecewise flat surfaces.Comment: 18 pages, 6 vector graphics figures. v2: Section 2 on Delaunay triangulations of piecewise flat surfaces revised and expanded. References added. Some minor changes, typos corrected. v3: fixed inaccuracies in discussion of flip algorithm, corrected attributions, added references, some minor revision to improve expositio

    Semi-classical Dynamical Triangulations

    Full text link
    For non-critical string theory the partition function reduces to an integral over moduli space after integrating over matter fields. The moduli integrand is known analytically for genus one surfaces. The formalism of dynamical triangulations provides us with a regularization of non-critical string theory and we show that even for very small triangulations it reproduces very well the continuum integrand when the central charge cc of the matter fields is large negative, thus providing a striking example of how the quantum fluctuations of geometry disappear when c→−∞c \to -\infty.Comment: 11 pages, 5 figure

    Electrical networks and Stephenson's conjecture

    Full text link
    In this paper, we consider a planar annulus, i.e., a bounded, two-connected, Jordan domain, endowed with a sequence of triangulations exhausting it. We then construct a corresponding sequence of maps which converge uniformly on compact subsets of the domain, to a conformal homeomorphism onto the interior of a Euclidean annulus bounded by two concentric circles. As an application, we will affirm a conjecture raised by Ken Stephenson in the 90's which predicts that the Riemann mapping can be approximated by a sequence of electrical networks.Comment: Comments are welcome
    • …
    corecore