15,066 research outputs found

    Frequency-Domain Analysis of Linear Time-Periodic Systems

    Get PDF
    In this paper, we study convergence of truncated representations of the frequency-response operator of a linear time-periodic system. The frequency-response operator is frequently called the harmonic transfer function. We introduce the concepts of input, output, and skew roll-off. These concepts are related to the decay rates of elements in the harmonic transfer function. A system with high input and output roll-off may be well approximated by a low-dimensional matrix function. A system with high skew roll-off may be represented by an operator with only few diagonals. Furthermore, the roll-off rates are shown to be determined by certain properties of Taylor and Fourier expansions of the periodic systems. Finally, we clarify the connections between the different methods for computing the harmonic transfer function that are suggested in the literature

    Global computation of phase-amplitude reduction for limit-cycle dynamics

    Get PDF
    Recent years have witnessed increasing interest to phase-amplitude reduction of limit-cycle dynamics. Adding an amplitude coordinate to the phase coordinate allows to take into account the dynamics transversal to the limit cycle and thereby overcomes the main limitations of classic phase reduction (strong convergence to the limit cycle and weak inputs). While previous studies mostly focus on local quantities such as infinitesimal responses, a major and limiting challenge of phase-amplitude reduction is to compute amplitude coordinates globally, in the basin of attraction of the limit cycle. In this paper, we propose a method to compute the full set of phase-amplitude coordinates in the large. Our method is based on the so-called Koopman (composition) operator and aims at computing the eigenfunctions of the operator through Laplace averages (in combination with the harmonic balance method). This yields a forward integration method that is not limited to two-dimensional systems. We illustrate the method by computing the so-called isostables of limit cycles in two, three, and four-dimensional state spaces, as well as their responses to strong external inputs.Comment: 26 page

    Large-signal device simulation in time- and frequency-domain: a comparison

    No full text
    The aim of this paper is to compare the most common time- and frequency-domain numerical techniques for the determination of the steady-state solution in the physics-based simulation of a semiconductor device driven by a time-periodic generator. The shooting and harmonic balance (HB) techniques are applied to the solution of the discretized drift-diffusion device model coupled to the external circuit embedding the semiconductor device, thus providing a fully nonlinear mixed mode simulation. The comparison highlights the strong and weak points of the two approaches, basically showing that the time-domain solution is more robust with respect to the initial condition, while the HB solution provides a more rapid convergence once the initial datum is close enough to the solution itsel

    Mean flow of turbulent–laminar patterns in plane Couette flow

    Get PDF
    A turbulent–laminar banded pattern in plane Couette flow is studied numerically. This pattern is statistically steady, is oriented obliquely to the streamwise direction, and has a very large wavelength relative to the gap. The mean flow, averaged in time and in the homogeneous direction, is analysed. The flow in the quasi-laminar region is not the linear Couette profile, but results from a non-trivial balance between advection and diffusion. This force balance yields a first approximation to the relationship between the Reynolds number, angle, and wavelength of the pattern. Remarkably, the variation of the mean flow along the pattern wavevector is found to be almost exactly harmonic: the flow can be represented via only three cross-channel profiles as U(x, y, z) ≈ U0(y) + Uc(y) cos(kz) + Us(y) sin(kz). A model is formulated which relates the cross-channel profiles of the mean flow and of the Reynolds stress. Regimes computed for a full range of angle and Reynolds number in a tilted rectangular periodic computational domain are presented. Observations of regular turbulent–laminar patterns in other shear flows – Taylor–Couette, rotor–stator, and plane Poiseuille – are compared

    Nonlinear normal modes, modal interactions and isolated resonance curves

    Get PDF
    The objective of the present study is to explore the connection between the nonlinear normal modes of an undamped and unforced nonlinear system and the isolated resonance curves that may appear in the damped response of the forced system. To this end, an energy balancing technique is used to predict the amplitude of the harmonic forcing that is necessary to excite a specific nonlinear normal mode. A cantilever beam with a nonlinear spring at its tip serves to illustrate the developments. The practical implications of isolated resonance curves are also discussed by computing the beam response to sine sweep excitations of increasing amplitudes.Comment: Journal pape
    corecore